zoukankan      html  css  js  c++  java
  • 数学竞赛常用结论

    想不到吧,我转竞赛了QWQ

    1. 均值不等式:若 $ a_{1}, cdots, a_{n}>0,$ 则以下不等式成立,当且仅当 (a_{1}=cdots=a_{n}) 时取等

      ( frac{n}{frac{1}{a_{1}}+cdots+frac{1}{a_{n}}} leq sqrt[n]{a_{1} cdots a_{n}} leq frac{a_{1}+cdots+a_{n}}{n} leq sqrt{frac{a_{1}^{2}+cdots+a_{n}^{2}}{n}} )

    2. 柯西不等式、拉格朗日恒等式与赫尔德不等式

    (left(a_{1}^{2}+cdots+a_{n}^{2} ight)left(b_{1}^{2}+cdots+b_{n}^{2} ight) geqleft(a_{1} b_{1}+cdots+a_{n} b_{n} ight)^{2},)当且仅当(frac{a_{1}}{b_{1}}=cdots=frac{a_{n}}{b_{n}}) 时取等

    [left(sumlimits_{i=1}^{n} a_{i}^{2} ight)left(sumlimits_{i=1}^{n} b_{i}^{2} ight)=left(sumlimits_{i=1}^{n} a_{i} b_{i} ight)^{2}+sumlimits_{1 leq i<j leq n}left(a_{i} b_{j}-a_{j} b_{i} ight)^{2} ]

    (left(a_{1}^{3}+cdots+a_{n}^{3} ight)left(b_{1}^{3}+cdots+b_{n}^{3} ight)left(c_{1}^{3}+cdots+c_{n}^{3} ight) geqleft(a_{1} b_{1} c_{1}+cdots+a_{n} b_{n} c_{n} ight)^{3},) 各项为正

    1. 贝努利不等式

      (1) 已知 (x>-1,)(alpha>1)(alpha<0)((1+x)^{alpha} geq 1+alpha mathrm{x})

      (0<alpha<1) 时, ((1+x)^{alpha} leq 1+alpha mathrm{x},) 当且仅当 (x=0) 时取等

      (2) 当(x_{1}, cdots, x_{n}>-1) 且同号时, (left(1+x_{1} ight) cdotsleft(1+x_{n} ight)>1+x_{1}+cdots+x_{n})

    2. 排序不等式与切比雪夫不等式

      已知 (a_{1} leq cdots leq a_{n}, b_{1} leq cdots leq b_{n}, i_{1}, cdots, i_{n})(1, cdots, mathrm{n}) 的一个排列

      (egin{array}{l}a_{1} b_{1}+cdots+a_{n} b_{n} geq a_{1} b_{i_{1}}+cdots+a_{n} b_{i_{n}} geq a_{1} b_{n}+cdots+a_{n} b_{1} \ a_{1} b_{1}+cdots+a_{n} b_{n} geq frac{1}{n}left(a_{1}+cdots+a_{n} ight)left(b_{1}+cdots+b_{n} ight) geq a_{1} b_{n}+cdots+a_{n} b_{1}end{array})

    3. 舒尔(Schur)不等式 已知 (x, y, z geq 0,)(sum x^{r}(x-y)(x-z) geq 0, r=1) 为标准形式,变形

      (1) (sum x^{3}-sum x^{2}(y+z)+3 x y z geq 0)

      (2)(left(sum x ight)^{3}-4 sum x sum x y+9 x y z geq 0)

      (3) $prod(x+y-z) leq xyz $

    4. 凸函数与琴生不等式

      (1)若(f'' (x)>0(a leq x leq b),)(f(x)) 在区间 ([a, b]) 上是下凸函数

      (2)若 (f(x)) 满足(1),则对任意 (x_{1}, cdots, x_{n} in[a, b])

      (frac{fleft(x_{1} ight)+cdots+fleft(x_{n} ight)}{n} geq fleft(frac{x_{1}+cdots+x_{n}}{n} ight),) 当且仅当 (x_{1}=cdots=x_{n}) 时取等

      (3)更强的结论:若(lambda_ige 0,sumlimits_{i=1}^nlambda_i=1),则有(lambda_1f(x_1)+cdots +lambda_nf(x_n)le f(lambda_1x_1+cdots+lambda_nx_n))

    5. 恒等式

      ((1)(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a)

      ((2) a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)left(a^{2}+b^{2}+c^{2}-a b-b c-c a ight))

      ((3)left(a b^{2}+b c^{2}+c a^{2} ight)-left(a^{2} b+b^{2} c+c^{2} a ight)=(a-b)(b-c)(c-a))

      ((4)(a+b+c)(a b+b c+c a)=(a+b)(b+c)(c+a)+a b c)

      ((5)(a+b)(a+c)=a^{2}+a b+b c+c a)

      ((6)(a+c)(b+d)=a b+b c+c d+d a)

      ((7)left(sumlimits_{i=1}^{n} a_{i} ight)^{2}=sumlimits_{i=1}^{n} a_{i}^{2}+2 sumlimits_{i<j} a_{i} a_{j})

      ((8))(Delta mathrm{ABC})(, sum cos ^{2} A+2 cos A cos B cos C=1, sum cot B cot C=1)

    6. 三角横等式

      [egin{array}{l} sin alpha+sin eta=2 sin frac {alpha+eta}2 cos frac {alpha-eta}2 \ sin alpha-sin eta=2 cos frac {alpha+eta}2 sin frac {alpha-eta}2 \ cos alpha+cos eta=2 cos frac {alpha+eta}2 cos frac {alpha-eta}2 \ cos alpha-cos eta=-2 sin frac {alpha+eta}2 sin frac {alpha-eta}2 end{array}]

      [egin{array}{l} sin alpha cdot cos eta=frac 12[sin (alpha+eta)+sin (alpha-eta)] \ cos alpha cdot sin eta=frac 12[sin (alpha+eta)-sin (alpha-eta)] \ cos alpha cdot cos eta=frac 12[cos (alpha+eta)+cos (alpha-eta)] \ sin alpha cdot sin eta=-frac 12[cos (alpha+eta)-cos (alpha-eta)] end{array}]

      [egin{array}{l} sin (3 alpha)=3 sin alpha-4sin^3 alpha=4 sin alpha cdot sin left(60^{circ}+alpha ight) sin left(60^{circ}-alpha ight) \ cos (3 alpha)=4cos^3 alpha-3 cos alpha=4 cos alpha cdot cos left(60^{circ}+alpha ight) cos left(60^{circ}-alpha ight) \ end{array}]

      [egin{aligned} &sin alpha=frac{2 an frac{alpha}{2}}{1+ an ^{2} frac{alpha}{2}}\ &cos alpha=frac{1- an ^{2} frac{alpha}{2}}{1+ an ^{2} frac{alpha}{2}} end{aligned}]

    7. 整系数多项式

      既约分数(x_0=frac pq)是整系数多项式(f(x)=sumlimits_{i=1}^na_ix_i=0)的有理数解,则

      (1) (p mid a_{0})(q mid a_{n})

      (2) (f(x)) 除以 (x-frac{q}{p}) 所得的商的各项系数必为(p)的倍数

    8. Abel求和

      [ ext {若 } B_{n}=sumlimits_{i=1}^{n} b_{i} ext { 则 } S=sumlimits_{i=1}^{n} a_{i} b_{i}=B_{n} a_{n}-sumlimits_{i=1}^{n-1} B_{i}left(a_{i+1}-a_{i} ight) ]

  • 相关阅读:
    BNU 51002 BQG's Complexity Analysis
    BNU OJ 51003 BQG's Confusing Sequence
    BNU OJ 51000 BQG's Random String
    BNU OJ 50999 BQG's Approaching Deadline
    BNU OJ 50998 BQG's Messy Code
    BNU OJ 50997 BQG's Programming Contest
    CodeForces 609D Gadgets for dollars and pounds
    CodeForces 609C Load Balancing
    CodeForces 609B The Best Gift
    CodeForces 609A USB Flash Drives
  • 原文地址:https://www.cnblogs.com/happyLittleRabbit/p/13498502.html
Copyright © 2011-2022 走看看