zoukankan      html  css  js  c++  java
  • 小白挑战:AsyncTask源码分析

    //AsyncTask从本质上讲,是对ThreadPool和handler的封装.

    在学习线程池相关的知识时,看到书中提到AsyncTask的实现中使用到了ThreadPool,于是把源码翻了出来,
    源码并不长,顺便分析了一下.小白挑战,大牛勿喷(好像大牛也不会看到...)

    成员变量的解析

    我打算先把成员变量分析一下(AsyncTask源码不是很复杂,可以这么做,算是特殊情况吧),算是为后面分析AsyncTask的工作流程做铺垫.

    线程池 THREAD_POOL_EXECUTOR

        //cpu核心数
        private static final int CPU_COUNT = Runtime.getRuntime().availableProcessors();
        //核心线程数
        private static final int CORE_POOL_SIZE = CPU_COUNT + 1;
        //最大线程数
        private static final int MAXIMUM_POOL_SIZE = CPU_COUNT * 2 + 1;
        //非核心线程数闲置时的超时时长
        private static final int KEEP_ALIVE = 1;
        
        //线程工厂,为线程池提供创建新线程的功能只有一个方法newThread(),具体实现就是创建一个thread并返回
        private static final ThreadFactory sThreadFactory = new ThreadFactory() {
            private final AtomicInteger mCount = new AtomicInteger(1);
    
            public Thread newThread(Runnable r) {
                return new Thread(r, "AsyncTask #" + mCount.getAndIncrement());
            }
        };
        
        //线程池中的任务队列,通过线程池的execute方法提交的Runnable对象会存储在这个参数中,此处LinkedBlockingQueue是一个单向链表实现的阻塞队列
        private static final BlockingQueue<Runnable> sPoolWorkQueue =
                new LinkedBlockingQueue<Runnable>(128);
    
        //使用以上参数创建的线程池
        public static final Executor THREAD_POOL_EXECUTOR
                = new ThreadPoolExecutor(CORE_POOL_SIZE, MAXIMUM_POOL_SIZE, KEEP_ALIVE,
                        TimeUnit.SECONDS, sPoolWorkQueue, sThreadFactory);
    
    

    sDefaultExecutor (特别强调:串行)

        private static class SerialExecutor implements Executor {
            //这里使用了一个双端队列
            final ArrayDeque<Runnable> mTasks = new ArrayDeque<Runnable>();
            Runnable mActive;
    
            public synchronized void execute(final Runnable r) {
                mTasks.offer(new Runnable() {
                    public void run() {
                        try {
                            r.run();
                        } finally {
                            scheduleNext();
                        }
                    }
                });
                if (mActive == null) {
                    scheduleNext();
                }
            }
    
            protected synchronized void scheduleNext() {
                if ((mActive = mTasks.poll()) != null) {
                    THREAD_POOL_EXECUTOR.execute(mActive);
                }
            }
        }
    

    这里实现了一个串行的exectuor,这里的实现很巧妙,仔细观察可以发现,每次调用execute()方式都必然会调用scheduleNext(),
    使得mTasks中的所有Runnable对象依次执行.

    还有一点需要注意的是:
    这里的execute()方法的作用只是用于给任务排队,真正执行任务的是THREAD_POOL_EXECUTOR.

    然后看一下成员变量的声明:

        public static final Executor SERIAL_EXECUTOR = new SerialExecutor();
    
        private static volatile Executor sDefaultExecutor = SERIAL_EXECUTOR;
    

    SERIAL_EXECUTOR 唯一的作用是把SerialExecutor对象传递给sDefaultExecutor,我觉得这种写法很奇怪,于是尝试了一下发现
    final和volatile不能同时修饰一个变量,其实从它们各自的作用也可以看出同时使用这两个修饰符是矛盾的.

    为什么这里要这样使用呢?

    我觉得原因在于下面这个隐藏方法:

        /** @hide */
        public static void setDefaultExecutor(Executor exec) {
            sDefaultExecutor = exec;
        }
    

    也就是说AsyncTask中有一个sDefaultExecutor的默认实现,但是还提供了一个隐藏方法,可以对其进行修改.

    sHandler

    首先先看一个内部类的实现,这个内部类是用来包装执行结果的,其中封装了一个AsyncTask实例和某种类型的数据集.

        @SuppressWarnings({"RawUseOfParameterizedType"})
        private static class AsyncTaskResult<Data> {
            final AsyncTask mTask;
            final Data[] mData;
    
            AsyncTaskResult(AsyncTask task, Data... data) {
                mTask = task;
                mData = data;
            }
        }
    

    接下来看InternalHandler的具体实现

        private static final int MESSAGE_POST_RESULT = 0x1;//返回结果
        private static final int MESSAGE_POST_PROGRESS = 0x2;//返回进度
    
        private static InternalHandler sHandler;
    
        private static class InternalHandler extends Handler {
            public InternalHandler() {
                super(Looper.getMainLooper());
            }
    
            @SuppressWarnings({"unchecked", "RawUseOfParameterizedType"})
            @Override
            public void handleMessage(Message msg) {
                AsyncTaskResult<?> result = (AsyncTaskResult<?>) msg.obj;
                switch (msg.what) {
                    case MESSAGE_POST_RESULT:
                        // There is only one result
                        result.mTask.finish(result.mData[0]);//具体实现在下面
                        break;
                    case MESSAGE_POST_PROGRESS:
                        result.mTask.onProgressUpdate(result.mData);//这个就是我们自定义AsyncTask时需要实现的onProgressUpdate()
                        break;
                }
            }
        }
    
        private void finish(Result result) {
            if (isCancelled()) {
                onCancelled(result);//这个同样需要用户来实现
            } else {
                onPostExecute(result);//这个就是我们自定义AsyncTask时需要实现的onPostExecute()
            }
            mStatus = Status.FINISHED;//任务执行完成的状态
        }
    
        //这里的实现是单例模式
        private static Handler getHandler() {
            synchronized (AsyncTask.class) {
                if (sHandler == null) {
                    sHandler = new InternalHandler();
                }
                return sHandler;
            }
        }
    
    

    onProgressUpdate,onPostExecute,onCancelled这三个回调方法会在这里集中处理,结合AsyncTask的使用方法,我们可以得出以下结论:
    在doInBackground()执行过程中或者结束后,会由该handler发送消息到主线程,调用相关回调方法,可以认为,handler是AsyncTask整个工作流程的倒数第二站.

    mWorker&FutureTask

        private final WorkerRunnable<Params, Result> mWorker;
        private final FutureTask<Result> mFuture;
    
        private static abstract class WorkerRunnable<Params, Result> implements Callable<Result> {
            Params[] mParams;
        }
    

    Callable

    WorkRunnable实现了Callble接口,Callable与Runnable的功能大致相似,不同的是Callable是一个泛型接口,它有一个泛型参数V,该接口中只有一个call()方法,该方法返回类型为V的值.
    Callable可以简单理解为有返回值的Runnable.
    可以对比一下

    public interface Callable<V> {
        /**
         * Computes a result, or throws an exception if unable to do so.
         *
         * @return computed result
         * @throws Exception if unable to compute a result
         */
        V call() throws Exception;
    }
    
    public interface Runnable {
    
        /**
         * Starts executing the active part of the class' code. This method is
         * called when a thread is started that has been created with a class which
         * implements {@code Runnable}.
         */
        public void run();
    }
    

    FutureTask

    FutureTask稍微复杂一些,FutureTask实现了 RunnableFuture接口,而RunnableFuture继承Runnable, Future

    Future提供了对Runnable或者Callable任务的执行结果进行取消,查询是否完成,获取结果的操作,FutureTask是它的实现类

    public interface Future<V> {
    
        boolean cancel(boolean mayInterruptIfRunning);
    
        boolean isCancelled();
    
        boolean isDone();
    
        V get() throws InterruptedException, ExecutionException;
    
        V get(long timeout, TimeUnit unit)
            throws InterruptedException, ExecutionException, TimeoutException;
    }
    

    下面是FutureTask的一个构造函数,在AsyncTask的构造函数中会使用其创建一个FutureTask实例

        public FutureTask(Callable<V> callable) {
            if (callable == null)
                throw new NullPointerException();
            this.callable = callable;
            this.state = NEW;       // ensure visibility of callable
        }
    

    下面看一下构造函数对这两个成员变量的初始化(构造函数唯一做的事情)

        /**
         * Creates a new asynchronous task. This constructor must be invoked on the UI thread.
         */
        public AsyncTask() {
            mWorker = new WorkerRunnable<Params, Result>() {
                public Result call() throws Exception {
                    mTaskInvoked.set(true);//设置mTask已经被调用过
    
                    Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
                    //noinspection unchecked
                    Result result = doInBackground(mParams);//调用doInBackground()!!!!!!!!
                    Binder.flushPendingCommands();
                    //调用postResult将结果投递给UI线程
                    return postResult(result);
                }
            };
    
            //将mWorker作为参数创建FutureTask实例
            //在mFuture实例中,将会调用mWorker做后台任务,完成后调用done方法
            mFuture = new FutureTask<Result>(mWorker) {
                @Override
                protected void done() {
                    try {
                        postResultIfNotInvoked(get());//确保postResult的执行
                    } catch (InterruptedException e) {
                        android.util.Log.w(LOG_TAG, e);
                    } catch (ExecutionException e) {
                        throw new RuntimeException("An error occurred while executing doInBackground()",
                                e.getCause());
                    } catch (CancellationException e) {
                        postResultIfNotInvoked(null);
                    }
                }
            };
        }
    
        //确保postResult的执行
        private void postResultIfNotInvoked(Result result) {
            final boolean wasTaskInvoked = mTaskInvoked.get();  
            if (!wasTaskInvoked) {
                postResult(result);
            }
        }
    
        //这里最终的结果是调用onCancelled()或者onPostExecute()
        private Result postResult(Result result) {
            @SuppressWarnings("unchecked")
            Message message = getHandler().obtainMessage(MESSAGE_POST_RESULT,
                    new AsyncTaskResult<Result>(this, result));
            message.sendToTarget();
            return result;
        }
    

    doInBackground和handler的使用都在这里!!!!!

    最后的三个成员变量(标志位)

        //枚举 执行状态
        private volatile Status mStatus = Status.PENDING;
        
        //是否取消
        private final AtomicBoolean mCancelled = new AtomicBoolean();
        //mTask是否被调用过
        private final AtomicBoolean mTaskInvoked = new AtomicBoolean();
    
        public enum Status {
            /**
             * Indicates that the task has not been executed yet.
             */
            PENDING,
            /**
             * Indicates that the task is running.
             */
            RUNNING,
            /**
             * Indicates that {@link AsyncTask#onPostExecute} has finished.
             */
            FINISHED,
        }
    

    至此,AsyncTask中的所有成员变量分析完毕,各个关键回调方法的调用地点也都清楚了,下面我们从execute()方法入手,分析一下AsyncTask的工作流程.

        @MainThread
        public final AsyncTask<Params, Progress, Result> execute(Params... params) {
            return executeOnExecutor(sDefaultExecutor, params);//这里的参数现在看起来已经很清晰了,sDefaultExecutor是用于将任务加入队列的executor,params是用户提供的参数.
        }
    

    继续往下看executeOnExecutor

        @MainThread
        public final AsyncTask<Params, Progress, Result> executeOnExecutor(Executor exec,
                Params... params) {
            //首先,判断状态,只有PENDING才能继续执行
            if (mStatus != Status.PENDING) {
                switch (mStatus) {
                    case RUNNING:
                        throw new IllegalStateException("Cannot execute task:"
                                + " the task is already running.");
                    case FINISHED:
                        throw new IllegalStateException("Cannot execute task:"
                                + " the task has already been executed "
                                + "(a task can be executed only once)");
                }
            }
            //修改状态为RUNNING
            mStatus = Status.RUNNING;
    
            onPreExecute();//onPreExectue首先执行
    
            //设置mWorker的参数
            mWorker.mParams = params;
            //这里的exec就是sDefaultExecutor,
            exec.execute(mFuture);
    
            return this;
        }
    

    通过上文的分析,我们知道这里的exec.execute(mFuture)最终调用到了THREAD_POOL_EXECUTOR中的execute()方法.
    线程池内部的具体细节暂不分析,execute()方法执行的最终结果是将mFuture中的run()方法启动.

    FutureTask中的run():

     public void run() {
            if (state != NEW ||
                !U.compareAndSwapObject(this, RUNNER, null, Thread.currentThread()))
                return;
            try {
                Callable<V> c = callable;
                if (c != null && state == NEW) {
                    V result;
                    boolean ran;
                    try {
                        result = c.call();//这里调用了mWorker的call()方法,而mWorker的call()调用了doInBackground()方法.至此,线程真正启动了.
                        ran = true;
                    } catch (Throwable ex) {
                        result = null;
                        ran = false;
                        setException(ex);
                    }
                    if (ran)
                        set(result);//成功获取结果后,调用set()方法
                }
            } finally {
                // runner must be non-null until state is settled to
                // prevent concurrent calls to run()
                runner = null;
                // state must be re-read after nulling runner to prevent
                // leaked interrupts
                int s = state;
                if (s >= INTERRUPTING)
                    handlePossibleCancellationInterrupt(s);
            }
        }
    
        protected void set(V v) {
            if (U.compareAndSwapInt(this, STATE, NEW, COMPLETING)) {
                outcome = v;
                U.putOrderedInt(this, STATE, NORMAL); // final state
                finishCompletion();//set()方法又调用finishCompletion()方法
            }
        }
    
     private void finishCompletion() {
            // assert state > COMPLETING;
            for (WaitNode q; (q = waiters) != null;) {
                if (U.compareAndSwapObject(this, WAITERS, q, null)) {
                    for (;;) {
                        Thread t = q.thread;
                        if (t != null) {
                            q.thread = null;
                            LockSupport.unpark(t);
                        }
                        WaitNode next = q.next;
                        if (next == null)
                            break;
                        q.next = null; // unlink to help gc
                        q = next;
                    }
                    break;
                }
            }
    
            done();//finishCompletion()方法最终调用了done()方法,而上文中已经提到,调用done()方法最终的结果是通过handler调用onCancelled()或者opPostExecute();
    
            callable = null;        // to reduce footprint
        }
    

    至此,AsyncTask的整个工作流程分析完毕,一次奇妙的源码之旅get,接下来可以去拜读各位大牛对于AsyncTask更加深入的分析了...

  • 相关阅读:
    box-sizing: border-box的作用
    什么时候用created,什么时候用mounted
    圣杯布局
    关闭浏览器 清除session
    js this
    js 深拷贝
    经常犯的一些小错误
    语法:c++对关于空指针0/NULL/nullptr三者的演变
    常用的函数
    C++一些小技巧
  • 原文地址:https://www.cnblogs.com/happyhacking/p/5343448.html
Copyright © 2011-2022 走看看