zoukankan      html  css  js  c++  java
  • POJ 1221: UNIMODAL PALINDROMIC DECOMPOSITIONS

    Description
     
    A sequence of positive integers is Palindromic if it reads the same forward and backward. For example: 
    23 11 15 1 37 37 1 15 11 23 
    1 1 2 3 4 7 7 10 7 7 4 3 2 1 1 
    A Palindromic sequence is Unimodal Palindromic if the values do not decrease up to the middle value and then (since the sequence is palindromic) do not increase from the middle to the end For example, the first example sequence above is NOT Unimodal Palindromic while the second example is. 
    A Unimodal Palindromic sequence is a Unimodal Palindromic Decomposition of an integer N, if the sum of the integers in the sequence is N. For example, all of the Unimodal Palindromic Decompositions of the first few integers are given below: 
    1: (1) 
    2: (2), (1 1) 
    3: (3), (1 1 1) 
    4: (4), (1 2 1), (2 2), (1 1 1 1) 
    5: (5), (1 3 1), (1 1 1 1 1) 
    6: (6), (1 4 1), (2 2 2), (1 1 2 1 1), (3 3), 
    (1 2 2 1), ( 1 1 1 1 1 1) 
    7: (7), (1 5 1), (2 3 2), (1 1 3 1 1), (1 1 1 1 1 1 1) 
    8: (8), (1 6 1), (2 4 2), (1 1 4 1 1), (1 2 2 2 1), 
    (1 1 1 2 1 1 1), ( 4 4), (1 3 3 1), (2 2 2 2), 
    (1 1 2 2 1 1), (1 1 1 1 1 1 1 1) 

    Write a program, which computes the number of Unimodal Palindromic Decompositions of an integer. 

    Input

    Input consists of a sequence of positive integers, one per line ending with a 0 (zero) indicating the end. 

    Output

    For each input value except the last, the output is a line containing the input value followed by a space, then the number of Unimodal Palindromic Decompositions of the input value. See the example on the next page. 

    Sample Input

    2
    3
    4
    5
    6
    7
    8
    10
    23
    24
    131
    213
    92
    0

    Sample Output

    2 2
    3 2
    4 4
    5 3
    6 7
    7 5
    8 11
    10 17
    23 104
    24 199
    131 5010688
    213 1055852590
    92 331143

    The basic idea is to establish a look-up table (LUT) and utilize previous calculated results. So we have to find a way to reduce a problem (decompose m) into a simpler or already calculated problem.

    For an odd number, we can either leave it untouched to get an answer, or decompose it into 3 or more components. For example, we can decompose 17 into 1 + 15 + 1. By limiting both ends of the sequence to 1, we can now focus on finding the number of ways to decompose 15. In this way, we reduce the current problem to a smaller one, and we can do it recursively. We can also limit the ends of the sequence to 3, but when decomposing the middle part, both ends cannot be less than 3. 

    For an even number, there is an extra way to perform decomposition, i.e. dividing the number by half. For example, 12 = 6 + 6.

    In my code below, I establish an LUT to store the intermediate results. I hope the code is easier to understand than my explanation above. Anyway, it's my first blog and I hope it could help someone in need. 

     
     1 #include <iostream>
     2 #include <cstring>
     3 
     4 using namespace std;
     5 
     6 const int maxn = 251;
     7 
     8 long long d[maxn][maxn];
     9 
    10 int main()
    11 {
    12     memset(d, 0, sizeof(d));
    13     d[1][1] = 1;
    14     d[2][1] = 1;
    15     d[2][2] = 1;
    16     d[1][0] = 1;
    17     d[2][0] = 2; 
    18     for(int i = 3; i < maxn; i++)
    19     {
    20         d[i][i] = 1;
    21         d[i][0] += 1;
    22         if(i % 2 == 0)
    23         {
    24             d[i][i/2] = 1;
    25             d[i][0] += 1;
    26         }
    27         for(int j = 1; j < maxn && i >= 3 * j; j++)
    28         {
    29             for(int m = j; m <= i - 2 * j; m++)
    30             {
    31                 d[i][j] += d[i - 2 * j][m];
    32             }
    33             d[i][0] += d[i][j];
    34         }
    35     }
    36 
    37     int n;
    38     cin >> n;
    39     while(n)
    40     {
    41         cout << n << ' ' << d[n][0] << endl;
    42         cin >> n;
    43     }
    44     return 0;
    45 }
  • 相关阅读:
    广告小程序后端开发(8.发布免费广告或店铺,以及上传图片)
    广告小程序后端开发(7.获取价格表数据)
    广告小程序后端开发(6.获取类别逻辑)
    广告小程序后端开发(5.安装配置django-rest-framework,编写后台登录逻辑)
    广告小程序后端开发(4.导入地区数据,修改adminx,修改models,手动添加模拟数据)
    广告小程序后端开发(3.xadmin的引入)
    广告小程序后端开发(2.Models设计)
    使用django执行数据更新命令时报错:django.db.migrations.exceptions.InconsistentMigrationHistory: Migration admin.0001_initial is applied before its dependency users.00 01_initial on database 'default'.
    广告小程序后端开发(1.新建项目、连接数据库)
    pycharm的Database连接新的Mysql5.7报错[08001]
  • 原文地址:https://www.cnblogs.com/happypku/p/3143728.html
Copyright © 2011-2022 走看看