zoukankan      html  css  js  c++  java
  • 202120221 20191315《信息安全系统设计与实现(上)》学习笔记11

    TCP/IP和网络编程

    本章论述了TCP/IP和网络编程,分为两个部分。第一部分论述了TCP/IP协议及其应用,具体包括TCP/IP栈、IP地址、主机名、DNS、IP数据包和路由器;介绍了TCP/IP网络中的UDP和TCP协议、端口号和数据流;阐述了服务器-客户机计算模型和套接字编程接口;通过使用UDP和TCP套接字的示例演示了网络编程。第一个编程项目可实现一对通过互联网执行文件操作的TCP服务器-客户机,可让用户定义其他通信协议来可靠地传输文件内容。
    本章的第二部分介绍了Web和CGI编程,解释了HTTP编程模型、Web页面和Web浏览器;展示了如何配置Linux HTTPD服务器来支持用户Web页面、PHP和CGI编程;阐释了客户机和服务器端动态Web页面;演示了如何使用PHP和CGI创建服务器端动态Web页面。第二个编程项目可让读者在Linux HTTPD服务器上通过CGI编程实现服务器端动态Web页面。

    网络编程简介

    TCP/IP协议、UDP和TCP协议、服务器-客户机计算、HTTP和Web页面、动态Web页面的PHP和CGI编程

    TCP/IP协议

    TCP/IP (Comer 1988, 2001; RFC1180 1991 )是互联网的基础。TCP代表传输控制协议。 IP代表互联网协议。目前有两个版本的IP,即IPv4和IPv6o IPv4使用32位地址,IPv6则 使用128位地址。本节围绕IPv4进行讨论,它仍然是目前使用最多的IP版本。TCP/IP的 组织结构分为几个层级,通常称为TCP/IP堆栈

    IP主机和IP地址

    主机是支持TCP/IP协议的计算机或设备。每个主机由一个32位的IP地址来标识。为了方便起见32位的IP地址号通常用点记法表示,例如:134.121.64.1,其中各个字节用点号分开。主机也可以用主机名来表示,如dnsleecwsuedu。实际上,应用程序通常使用主机名而不是IP地址。在这个意义上说,主机名就等同于IP地址,因为给定其中一个,我们可以通过DNS(域名系统)(RFC1341987RFC10351987)服务器找到另一个,它将IP地址转换为主机名,反之亦然。
    IP地址分为两部分,即NetworkID字段和HostID字段。根据划分,IP地址分为A~F类。例如,一个B类IP地址被划分为一个16位NetworkID,其中前2位是10,然后是一个16位的HostID字段。发往IP地址的数据包首先被发送到具有相同networkID的路由器。路由器将通过HostID将数据包转发到网络中的特定主机。每个主机都有一个本地主机名 localhost默认IP地址为127001。本地主机的链路层是一个回送虚拟设备,它将每个数据包路由回同一个localhost。这个特性可以让我们在同一台计算机上运行TCP/IP应用程序而不需要实际连接到互联网。

    IP协议

    IP协议用于在IP主机之间发送/接收数据包。IP尽最大努力运行。IP主机只向接收主机发送数据包,但它不能保证数据包会被发送到它们的目的地,也不能保证按顺序发送。这意味着IP并非可靠的协议。必要时,必须在IP层的上面实现可靠性。

    IP数据包格式

    路由器

    IP主机之间可能相距很远。通常不可能从一个主机直接向另一个主机发送数据包。路由器是接收和转发数据包的特殊IP主机。如果有的话,一个IP数据包可能会经过许多路由器,或者跳跃到达某个目的地。

    UDP

    UDP(用户数据报协议)在IP上运行,用于发送/接收数据报。与IP类似,UDP不能保证可靠性,但是快速高效。它可用于可靠性不重要的情况。用户可以使用ping命令探测目标主机。
    ping是一个向目标主机发送带时间戳UDP包的应用程序。接收到一个pinging数据包后,目标主机将带有时间戳的UDP包回送给发送者,让发送者可以计算和显示往返时间。 如果目标主机不存在或宕机,当TTL减小为0时,路由器将会丢弃pinging UDP数据包。在这种情况下,用户会发现目标主机没有任何响应。用户可以尝试再次ping,或者断定目标主机宕机。在这种情况下,最好使用UDP,因为不要求可靠性。

    TCP

    TCP(传输控制协议)是一种面向连接的协议,用于发送/接收数据流。TCP也可在IP上运行,但它保证了可靠的数据传输。通常,UDP类似于发送邮件的USPS,而TCP类似于电话连接。

    端口编号

    在各主机上,多个应用程序(进程)可同时使用TCP/UDP,每个应用程序由三个组成部分唯一标识
    应用程序=(主机IP,协议,端口号)
    其中,协议是TCP或UDP,端口号是分配给应用程序的唯一无符号短整数。要想使用UDP或TCP,应用程序(进程)必须先选择或获取一个端口号。前1024个端口号已被预留,其他端口号可供一般使用。应用程序可以选择一个可用端口号,也可以让操作系统内核分配端口号。

    网络和主机字节序

    计算机可以使用大端字节序,也可以使用小端字节序。在互联网上,数据始终按网络序排列,这是大端。在小端机器上,例如基于Intel x86的PC, htons()、htonl()、ntohs()、 ntohl()等库函数,可在主机序和网络序之间转换数据。

    TCP/IP网络中的数据流

    网络编程

    所有Unix/Linux系统都为网络编程提供TCP/IP支持。用于网络编程的平台和服务器-客户机计算模型。

    套接字编程

    套接字地址

    struct sockaddr_in {
    sa_family_t sin_family; // AF_INET for TCP/IP
    // port number
    in_port_t sin_port;
    struct in_addr sin_addr;// IP address );
    // internet address struct in_addr {
    // IP address in network byte order
    s_addr;
    uint32_t
    );
    

    在套接字地址结构中,

    • TCP/IP 网络的 sin_family 始终设置为 AF_INET。
    • sin_port包含按网络字节顺序排列的端口号。
    • sin addr是按网络字节顺序排列的主机IP地址。

    套接字API

    服务器必须创建一个套接字,并将其与包含服务器IP 地址和端口号的套接字地址绑定。它可以使用一个固定端口号,或者让操作系统内核选择一个端口号(如果 sin port为0)。为了与服务器通信,客户机必须创建一个套接字。对于UPD套接字,可以将套接字绑定到服务器地址。如果套接字没有绑定到任何特定的服务器,那么它必须在后续的 sendto()/recvfrom()调用中提供一个包含服务器IP 和端口号的套接字地址。

    UDP套接字

    UDP 套接字使用 sendto()/recvfrom()来发送/接收数据报。

    ssize_t sendto(int soCkfd,const void *buf,size_t len,int flags,
    const struct sockaddr *dest_addr,socklen_t addrlen);
    ssize_t recvfrom(int sockfd,void *buf,size_t len,int flags,
    struct sockaddr *src_addr,socklen_t *addrlen);
    

    UDP套接字

    在创建套接字并将其绑定到服务器地址之后,TCP服务器使用listen()和 accept()来接收来自客户机的连接
    int listen(int sockfd, int backlog);
    listen()将sockfd引用的套接字标记为将用于接收连人连接的套接字。backlog 参数定义了等待连接的最大队列长度。
    int accept(int sockfd, struct sockaddr *addr, socklen t *addrlen);
    accept()系统调用与基于连接的套接字一起使用。它提取等待连接队列上的第一个连接请求用于监听套接字sockfd,创建一个新的连接套接字,并返回一个引用该套接字的新文件描述符,与客户机主机连接。在执行accept()系统调用时,TCP服务器阻塞,直到客户机通过 connect()建立连接。
    int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);
    connect()系统调用将文件描述符sockfd引用的套接字连接到addr指定的地址,addrlen 参数指定 addr的大小。addr中的地址格式由套接字sockfd的地址空间决定。
    如果套接字 sockfd是SOCK_DGRAM类型,即UDP套接字,addr是发送数据报的默认地址,也是接收数据报的唯一地址。这会限制UDP套接字与特定UDP主机的通信,但实际上很少使用。所以对于UDP套接字来说,连接是可选的或不必要的。如果套接字是 SOCK_STREAM类型,即TCP套接字,connect()调用尝试连接到绑定到addr指定地址的套接字。

    send()/read()以及recv/write()

    建立连接后,两个TCP主机都可以使用send()/write()发送数据,并使用recv()/read()接收数据。它们唯一的区别是send()和recv()中的flag参数不同,通常情况下可以将其设置为0。
    asize_t send(int sockfd, const void *buf, size_t len, int flags), asize_t write(sockfd, void *buf, size_t, len)
    ssize_t recv(int sockfd, void *buf, bize_t len, int flags); asize_t read(sockfd, void *buf, size_t len);

    通用套接字地址结构

    sockaddr
    struct sockaddr
    {
    uint8_t           sa_len;
    sa_family_t       sa_family;
    char              sa_data[14];
    };
    

    IPv6套接字地址结构

    IPv6套接字地址结构在<netinet/in.h>头文件中定义

    struct in6_addr
    {
    unit8_t s6_add[16];
     
    };
    #define SIN6_LEN
    struct sockaddr_in6
    { 
    uint8_t           sin6_len;
    sa_family_t       sin6_family;
    in_port_t         sin6_port;
    uint32_t          sin6_flowinfo;
    struct in6_addr   sin6_addr;
    uint32_t          sin6_scope_id;
    };
    

    新的struct sockaddr_storage足以容纳系统所支持的任何套接字地址结构。sockaddr_storage结构在<netinet/in.h>头文件中定义

    struct sockaddr_storage
    {
    uint8_t       ss_len;
    sa_family_t   ss_family;
    };
    

    实践

    代码

    点击查看代码
        #include <stdio.h>
        #include <stdlib.h>
        #include <sys/types.h>
        #include <sys/socket.h>
        #include <netinet/in.h>
        #include <arpa/inet.h>
        #include <time.h>
        #include <string.h>
        #include <unistd.h>
        
        #define MAXLINE 256
        #define PORT 7777
        void sys_err(char *msg){
            perror(msg);
            exit(-1);
        }
        int main(int argc , char **argv){
        
        
            int sockFd,n;
            char recvLine[MAXLINE];
            struct sockaddr_in servAddr;
            
        
        if (argc != 2) {
                sys_err("usage: a.out <IPaddress>");
            }
        
            sockFd=socket(AF_INET,SOCK_STREAM,0);
        
        
            memset(&servAddr,0,sizeof(servAddr));
            
            servAddr.sin_family = AF_INET;
            servAddr.sin_port = htons(PORT);
            if (inet_pton(AF_INET,argv[1],&servAddr.sin_addr) <= 0) {
            
                sys_err("inet_pton error");
            }
            
            connect(sockFd,(struct sockaddr *)&servAddr,sizeof(servAddr));
        
        
            while((n=read(sockFd,recvLine,MAXLINE)) >0 ){
                recvLine[n] = '\0';
                if(fputs(recvLine,stdout) == EOF){
        
         sys_err("fputs error");
                }
            }
            if(n <0){
                sys_err("read error");
            }
            return 0;
        }
    

    运行结果

  • 相关阅读:
    关于线程池的线程复用
    Java线程锁之意难平的读写锁
    Java8之StringJoiner
    springboot整合thymeleaf
    一维数组转二叉树、注解回滚、eclipse配置代码自动补全
    Java之线程锁
    关于工作中的一些总结
    关于shiro的猜测
    Java之扫描不到mapper
    网页中引用css样式
  • 原文地址:https://www.cnblogs.com/harperhjl/p/15612375.html
Copyright © 2011-2022 走看看