Given a complete binary tree, count the number of nodes.
Definition of a complete binary tree from Wikipedia:
In a complete binary tree every level, except possibly the last, is
completely filled, and all nodes in the last level are as far left as
possible. It can have between 1 and 2h nodes inclusive at the last level h.
思路
计算根节点的左右子树的高度,如果高度相等则说明是满二叉树,节点数直接使用公式计算:2^h - 1;
否则,对左右孩子递归调用,即countNodes(left) + countNodes(right) + 1.
时间/空间复杂度
最好情况下为满二叉树,时间复杂度为O(h);
最坏情况下为O(n) (?)
程序
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public int countNodes(TreeNode root) { if (root == null) { return 0; } int lh = getLeftHeight(root); int rh = getRightHeight(root); if (lh == rh) { return (1 << lh) - 1; } return countNodes(root.left) + countNodes(root.right) + 1; } private static int getLeftHeight(TreeNode root) { if (root == null) { return 0; } int count = 0; while (root != null) { ++count; root = root.left; } return count; } private static int getRightHeight(TreeNode root) { if (root == null) { return 0; } int count = 0; while (root != null) { ++count; root = root.right; } return count; } }