zoukankan      html  css  js  c++  java
  • 线段树优化 dijkstra (CF787D Legacy)

    线段树有很多神奇的作用,优化 (dijkstra) 就是其中之一

    我们拿这道模板题作为例子

    题意:

    (n) 个星球, (m) 条路径,每条路径分为下列三种:

    • (u~ ightarrow ~v),费用 (w)
    • (u~ ightarrow ~[l,r]),费用 (w)
    • ([l,r]~ ightarrow ~v),费用 (w)

    (s) 星球待其他星球的最短路

    跑单源最短路?显然是 (dijkstra)

    但直接建边的话数组都存不下,那么怎么办呢?

    考虑线段树优化最短路建模

    建两颗线段树,如下图建边:

    显然共 (O(n~log~n)) 个点;

    (O(n~log~n+q~log~n)) 条边

    再在上面跑 (dijkstra) 就行了

    时间复杂度 (O(n~log^2~n))

    #include <map>
    #include <set>
    #include <ctime>
    #include <queue>
    #include <stack>
    #include <cmath>
    #include <vector>
    #include <bitset>
    #include <cstdio>
    #include <cctype>
    #include <string>
    #include <numeric>
    #include <cstring>
    #include <cassert>
    #include <climits>
    #include <cstdlib>
    #include <iostream>
    #include <algorithm>
    #include <functional>
    using namespace std ;
    #define int long long
    #define rep(i, a, b) for (int i = (a); i <= (b); i++)
    #define per(i, a, b) for (int i = (a); i >= (b); i--)
    #define loop(s, v, it) for (s::iterator it = v.begin(); it != v.end(); it++)
    #define cont(i, x) for (int i = head[x]; i; i = e[i].nxt)
    #define clr(a) memset(a, 0, sizeof(a))
    #define ass(a, sum) memset(a, sum, sizeof(a))
    #define lowbit(x) (x & -x)
    #define all(x) x.begin(), x.end()
    #define ub upper_bound
    #define lb lower_bound
    #define pq priority_queue
    #define mp make_pair
    #define pb push_back
    #define fi first
    #define se second
    #define iv inline void
    #define enter cout << endl
    #define siz(x) ((int)x.size())
    #define file(x) freopen(#x".in", "r", stdin),freopen(#x".out", "w", stdout)
    typedef long long ll ;
    typedef unsigned long long ull ;
    typedef pair <int, int> pii ;
    typedef vector <int> vi ;
    typedef vector <pii> vii ;
    typedef queue <int> qi ;
    typedef queue <pii> qii ;
    typedef set <int> si ;
    typedef map <int, int> mii ;
    typedef map <string, int> msi ;
    const int N = 100010 ;
    const int INF = 0x3f3f3f3f3f3f3f3f ;
    const int iinf = 1 << 30 ;
    const ll linf = 2e18 ;
    const int MOD = 1000000007 ;
    const double eps = 1e-7 ;
    void print(int x) { cout << x << endl ; exit(0) ; }
    void PRINT(string x) { cout << x << endl ; exit(0) ; }
    void douout(double x){ printf("%lf
    ", x + 0.0000000001) ; }
    
    int n, m, s, cnt ;
    
    struct SegTree {
        int l, r, in, out ;
        vii e ;
        #define ls(x) x << 1
        #define rs(x) x << 1 | 1
        #define l(x) tr[x].l
        #define r(x) tr[x].r
        #define in(x) tr[x].in
        #define out(x) tr[x].out
        #define e(x) tr[x].e
    } tr[N << 2] ;
    
    void build(int x, int l, int r) {
        l(x) = l, r(x) = r ;
        if (l == r) {
            in(x) = out(x) = l ;
            return ;
        }
        int mid = (l + r) >> 1 ;
        build(ls(x), l, mid) ;
        build(rs(x), mid + 1, r) ;
        out(x) = ++cnt ; in(x) = ++cnt ;
        e(out(ls(x))).pb(mp(out(x), 0)) ;
        e(out(rs(x))).pb(mp(out(x), 0)) ;
        e(in(x)).pb(mp(in(ls(x)), 0)) ;
        e(in(x)).pb(mp(in(rs(x)), 0)) ;
    }
    
    void modifyin(int x, int l, int r, int pos, int c) {
        if (l <= l(x) && r(x) <= r) {
            e(pos).pb(mp(in(x), c)) ;
            return ;
        }
        int mid = (l(x) + r(x)) >> 1 ;
        if (l <= mid) modifyin(ls(x), l, r, pos, c) ;
        if (mid < r) modifyin(rs(x), l, r, pos, c) ;
    }
    
    void modifyout(int x, int l, int r, int pos, int c) {
        if (l <= l(x) && r(x) <= r) {
            e(out(x)).pb(mp(pos, c)) ;
            return ;
        }
        int mid = (l(x) + r(x)) >> 1 ;
        if (l <= mid) modifyout(ls(x), l, r, pos, c) ;
        if (mid < r) modifyout(rs(x), l, r, pos, c) ;
    }
    
    struct node {
        int x, dis ;
        bool operator < (node a) const {
            return dis > a.dis ;
        }
    };
    
    int dis[N * 10] ;
    pq <node> q ;
    
    void dij() {
        ass(dis, 0x3f) ; dis[s] = 0 ;
        q.push((node){s, 0}) ;
        while (!q.empty()) {
            node now = q.top() ; q.pop() ;
            if (dis[now.x] != now.dis) continue ;
            rep(i, 0, siz(e(now.x)) - 1) {
                int to = e(now.x)[i].fi, w = e(now.x)[i].se ;
                if (w + now.dis < dis[to]) {
                    dis[to] = now.dis + w ;
                    q.push((node){to, dis[to]}) ;
                }
            }
        }
    }
    
    signed main(){
        scanf("%lld%lld%lld", &n, &m, &s) ;
        cnt = n ;
        build(1, 1, n) ;
        rep(i, 1, m) {
            int op ; scanf("%lld", &op) ;
            if (op == 1) {
                int x, y, v ; scanf("%lld%lld%lld", &x, &y, &v) ;
                e(x).pb(mp(y, v)) ;
            }
            else if (op == 2) {
                int x, l, r, v ; scanf("%lld%lld%lld%lld", &x, &l, &r, &v) ;
                modifyin(1, l, r, x, v) ;
            } else {
                int x, l, r, v ; scanf("%lld%lld%lld%lld", &x, &l, &r, &v) ;
                modifyout(1, l, r, x, v) ;
            }
        }
        dij() ;
        rep(i, 1, n) printf("%lld ", (dis[i] == INF) ? -1 : dis[i]) ;
        return 0 ;
    }
    
    /*
    写代码时请注意:
        1.ll?数组大小,边界?数据范围?
        2.精度?
        3.特判?
        4.至少做一些
    思考提醒:
        1.最大值最小->二分?
        2.可以贪心么?不行dp可以么
        3.可以优化么
        4.维护区间用什么数据结构?
        5.统计方案是用dp?模了么?
        6.逆向思维?
    */
    
    

    总结这个算法,线段树其实并不是优化时间复杂度的,他只是使得空间与时间平衡,不至于开不下空间,而相应的,他也给时间复杂度多了一个 (log)

    加油ヾ(◍°∇°◍)ノ゙
  • 相关阅读:
    [置顶] 【玩转cocos2d-x之二十】从CCObject看cocos2d-x的内存管理机制
    android 随手记 读写文件的几种方式
    (队列的应用5.3.2)POJ 2259 Team Queue(队列数组的使用)
    iPhone调用ffmpeg2.0.2解码h264视频的示例代码
    android 随手记 仿微信的popwindow
    [LeetCode] Remove Nth Node From End of List
    [置顶] Zend Optimizer 和 Zend Debugger 同时安装
    uva 10721
    android实现六边形等不规则布局
    WPF中的TextBox隐藏边框
  • 原文地址:https://www.cnblogs.com/harryhqg/p/10456862.html
Copyright © 2011-2022 走看看