专有名词
- 机器学习 (machine learning)
- 预测分析 (predictive analytics)
- 统计学习 (statistical learning)
- 监督学习 (supervised learning)
- 无监督学习 (unsupervised learning)
- 样本 (sample)
- 特征 (feature)
- 特征提取 (feature extraction)
- 分类 (classification)
- 类别 (class)
- 标签 (label)
import numpy as np
import matplotlib as plt
import pandas as pd
import scipy as sp
import sklearn
# 以上为我们需要的类
1、鸢尾花分类
关键词
- 分类(classification)
- 散点图(Scatter Plot)
- 散点图矩阵(Pair Plot)
- 训练数据(training data)
- 训练集(training set)
- 留出集(hold-out set)
鸢尾花分类,是机器学习的一个入门和经典的知识点。我们往往可以通过这个小例子入手,来了解一下什么是机器学习。
python的scikit-learn模块已经将鸢尾花的数据进行内置,所以只需要调用函数进行读取和训练即可,无需准备数据。
# 输出iris——dataset中的键,了解一下存储了那些内容
from sklearn.datasets import load_iris
iris_dataset = load_iris()
print("keys of iris_dataset:{}
".format(iris_dataset.keys()))
keys of iris_dataset:dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names', 'filename'])
load_iris返回的iris对象是一个Bunch对象,与字典很相似,里面包含了键和值
# 输出描述信息的部分内容
print(iris_dataset['DESCR'][:200]+'
')
.. _iris_dataset:
Iris plants dataset
--------------------
**Data Set Characteristics:**
:Number of Instances: 150 (50 in each of three classes)
:Number of Attributes: 4 numeric, predictive
上面的DESCR键对应的值为数据集的简要说明。
target_name键对应的值是一个字符串数组,里面包含我们要预测的花的种类
print("Target_name:{}".format(iris_dataset['target_names']))
Target_name:['setosa' 'versicolor' 'virginica']
feature_names键对应的值是一个字符串列表,对每一个特征进行了说明
print("Feature name:{}".format(iris_dataset['feature_names']))
Feature name:['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']
通常为了可以达到训练和测试的目的,将收集好的带标签数据分为两部分,一部分数据用于构建机器学习模型,叫做训练数据(training data)或训练集(training set)其余的数据用来评估模型的性能,叫做测试数据(test data)测试集(test set)或留出集(hold-out set)。
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
iris_dataset = load_iris()
X_train,X_target,y_train,y_target = train_test_split(iris_dataset['data'],iris_dataset['target'],random_state=0)
print("X_train:{}
X_tar:{}
y_tar:{}
y_tra:{}
".format(X_train,X_target,y_target,y_train))
为了实现训练和测试的目的,scikit-learn内置了train_test_split函数,帮助我们对训练、测试数据,和训练、测试的标签默认按3:1的比例进行拆分。从而返回数据给定的参数。也可以使用随机种子的形式进行随机按比例分布。
# 利用X_train中的数据创建DataFrame
# 利用iris_dataset.feature_names中的字符串对数据阵列进行标记
iris_dataframe = pd.DataFrame(X_train, columns=iris_dataset.feature_names)
# 利用DataFrame创建散点图矩阵,按y_train着色
grr = pd.scatter_matrix(iris_dataframe, c=y_train, figsize=(15, 15), maker='0',hist_kwds={'bins':20}, s=60,alpha=.8)
scikit-learn中所有的机器学习模型都在各自的类中实现,这些类被称之为Estimator类。k近邻分类算法是在neighbor模块的KNeightborsClassifier类中实现。
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train,y_train)
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',metric_params=None, n_jobs=None, n_neighbors=1, p=2,weights='uniform')
X_new = np.array([[5,2.9,1,0.2]])
prediction = knn.predict(X_new)
print("Result of Prediction:{}".format(prediction))
print("{}".format(iris_dataset['target_names'][prediction]))
Result of Prediction:[0]
['setosa']
流程总结:
- 准备数据
- 分为训练数据和测试数据
- 观察数据
- 构建模型
- 做出预测
- 评估精度
# 代码总结
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from sklearn.neighbors import KNeighborsClassifier
iris_dataset = load_iris()
X_train,X_target,y_train,y_target = train_test_split(iris_dataset['data'],iris_dataset['target'],random_state=0)
knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train,y_train)
print("Test set score:{:.2f}".format(knn.score(X_target,y_target)))
Test set score:0.97