zoukankan      html  css  js  c++  java
  • [POJ 2019] Cornfields

    Cornfields
    Time Limit: 1000MS   Memory Limit: 30000K
    Total Submissions: 5516   Accepted: 2714

    Description

    FJ has decided to grow his own corn hybrid in order to help the cows make the best possible milk. To that end, he's looking to build the cornfield on the flattest piece of land he can find. 

    FJ has, at great expense, surveyed his square farm of N x N hectares (1 <= N <= 250). Each hectare has an integer elevation (0 <= elevation <= 250) associated with it. 

    FJ will present your program with the elevations and a set of K (1 <= K <= 100,000) queries of the form "in this B x B submatrix, what is the maximum and minimum elevation?". The integer B (1 <= B <= N) is the size of one edge of the square cornfield and is a constant for every inquiry. Help FJ find the best place to put his cornfield. 

    Input

    * Line 1: Three space-separated integers: N, B, and K. 

    * Lines 2..N+1: Each line contains N space-separated integers. Line 2 represents row 1; line 3 represents row 2, etc. The first integer on each line represents column 1; the second integer represents column 2; etc. 

    * Lines N+2..N+K+1: Each line contains two space-separated integers representing a query. The first integer is the top row of the query; the second integer is the left column of the query. The integers are in the range 1..N-B+1. 

    Output

    * Lines 1..K: A single integer per line representing the difference between the max and the min in each query. 

    Sample Input

    5 3 1
    5 1 2 6 3
    1 3 5 2 7
    7 2 4 6 1
    9 9 8 6 5
    0 6 9 3 9
    1 2
    

    Sample Output

    5
     
    二维RMQ问题 
    矩形解法:
    #include <iostream>
    #include <cstdio>
    #include <cmath>
    using namespace std;
    #define N 255
    
    int n,b,k;
    int val[N][N];
    int mx[N][N][8][8];
    int mi[N][N][8][8];
    
    void ST(int n,int m)
    {
        int i,j,r,c;
        for(i=1;i<=n;i++)
        {
            for(j=1;j<=m;j++)
            {
                mx[i][j][0][0]=mi[i][j][0][0]=val[i][j];
            }
        }
        int kn=(int)(log(double(n))/log(2.0));
        int km=(int)(log(double(m))/log(2.0));
        for(i=0;i<=kn;i++)
        {
            for(j=0;j<=km;j++)
            {
                if(i==0 && j==0)  continue;
                for(r=1;r+(1<<i)-1<=n;r++)
                {
                    for(c=1;c+(1<<j)-1<=m;c++)
                    {
                        if(i==0)
                        {
                            mx[r][c][i][j]=max(mx[r][c][i][j-1],mx[r][c+(1<<(j-1))][i][j-1]);
                            mi[r][c][i][j]=min(mi[r][c][i][j-1],mi[r][c+(1<<(j-1))][i][j-1]);
                        }
                        else
                        {
                            mx[r][c][i][j]=max(mx[r][c][i-1][j],mx[r+(1<<(i-1))][c][i-1][j]);
                            mi[r][c][i][j]=min(mi[r][c][i-1][j],mi[r+(1<<(i-1))][c][i-1][j]);
                        }
                    }
                }
            }
        }
    }
    
    int RMQ(int r1,int c1,int r2,int c2)
    {
        int kr=(int)(log(double(r2-r1+1))/log(2.0));
        int kc=(int)(log(double(c2-c1+1))/log(2.0));
        
        int t1=mx[r1][c1][kr][kc];
        int t2=mx[r2-(1<<kr)+1][c1][kr][kc];
        int t3=mx[r1][c2-(1<<kc)+1][kr][kc];
        int t4=mx[r2-(1<<kr)+1][c2-(1<<kc)+1][kr][kc];
        
        int m1=mi[r1][c1][kr][kc];
        int m2=mi[r2-(1<<kr)+1][c1][kr][kc];
        int m3=mi[r1][c2-(1<<kc)+1][kr][kc];
        int m4=mi[r2-(1<<kr)+1][c2-(1<<kc)+1][kr][kc];
        
        return max(max(t1,t2),max(t3,t4))-min(min(m1,m2),min(m3,m4));
    }
    
    int main()
    {
        int i,j;
        scanf("%d%d%d",&n,&b,&k);
        for(i=1;i<=n;i++)
        {
            for(j=1;j<=n;j++)
            {
                scanf("%d",&val[i][j]);
            }
        }
        ST(n,n);
        while(k--)
        {
            int r1,c1,r2,c2;
            scanf("%d%d",&r1,&c1);
            r2=r1+b-1;
            c2=c1+b-1;
            printf("%d
    ",RMQ(r1,c1,r2,c2));
        }
        return 0;
    }

    正方形解法:

    #include <stdio.h>
    #include <iostream>
    #include <math.h>
    using namespace std;
    #define inf 0x7fffffff
    #define N 255
    #define max(a,b) a>b?a:b
    #define min(a,b) a<b?a:b
    
    int n,b,k;
    int val[N][N];
    int mx[N][N][8];
    int mi[N][N][8];
    
    
    int getMax(int x,int y,int p)
    {
        int res=-inf;
        res=max(res,mx[x][y][p]);
        if(x+(1<<p)<=n) res=max(res,mx[x+(1<<p)][y][p]);
        if(y+(1<<p)<=n) res=max(res,mx[x][y+(1<<p)][p]);
        if(x+(1<<p)<=n && y+(1<<p)<=n) res=max(res,mx[x+(1<<p)][y+(1<<p)][p]);
        return res;
    }
    int getMin(int x,int y,int p)
    {
        int res=inf;
        res=min(res,mi[x][y][p]);
        if(x+(1<<p)<=n) res=min(res,mi[x+(1<<p)][y][p]);
        if(y+(1<<p)<=n) res=min(res,mi[x][y+(1<<p)][p]);
        if(x+(1<<p)<=n && y+(1<<p)<=n) res=min(res,mi[x+(1<<p)][y+(1<<p)][p]);
        return res;
    }
    
    void ST()
    {
        int i,j,k;
        for(i=1;i<=n;i++)
        {
            for(j=1;j<=n;j++)
            {
                mx[i][j][0]=mi[i][j][0]=val[i][j];
            }
        }
        int kn=(int)(log(n*1.0)/log(2.0));
        
        for(k=1;k<=kn;k++) 
        {
            for(i=1;i<=n;i++)
            {
                for(j=1;j<=n;j++)
                {
                    mx[i][j][k]=getMax(i,j,k-1);
                    mi[i][j][k]=getMin(i,j,k-1);
                }
            }
        }
    }
    
    
    int RMQMAX(int x,int y,int b)
    {
        int p=(int)(log(b*1.0)/log(2.0));
        int res=-inf;
        res=max(res,mx[x][y][p]);
        if(x+b-(1<<p)<=n) res=max(res,mx[x+b-(1<<p)][y][p]);
        if(y+b-(1<<p)<=n) res=max(res,mx[x][y+b-(1<<p)][p]);
        if(x+b-(1<<p)<=n && y+b-(1<<p)<=n) res=max(res,mx[x+b-(1<<p)][y+b-(1<<p)][p]);
        return res;
    }
    
    int RMQMIN(int x,int y,int b)
    {
        int p=(int)(log(b*1.0)/log(2.0));
        int res=inf;
        res=min(res,mi[x][y][p]);
        if(x+b-(1<<p)<=n) res=min(res,mi[x+b-(1<<p)][y][p]);
        if(y+b-(1<<p)<=n) res=min(res,mi[x][y+b-(1<<p)][p]);
        if(x+b-(1<<p)<=n && y+b-(1<<p)<=n) res=min(res,mi[x+b-(1<<p)][y+b-(1<<p)][p]);
        return res;
    }
    
    int main()
    {
        int i,j;
        scanf("%d%d%d",&n,&b,&k);
        for(i=1;i<=n;i++)
        {
            for(j=1;j<=n;j++)
            {
                scanf("%d",&val[i][j]);
            }
        }
        ST();
        while(k--)
        {
            int x,y;
            scanf("%d%d",&x,&y);
            printf("%d
    ",RMQMAX(x,y,b)-RMQMIN(x,y,b));
        }
        return 0;
    }
    趁着还有梦想、将AC进行到底~~~by 452181625
  • 相关阅读:
    如何上传整个项目或者是文件夹到github
    阅读笔记16-架构师推荐:提高90%开发效率的工具推荐
    阅读笔记15-这些普通的程序猿,如今都已进阶成为技术大佬
    python爬虫——爬取淘票票正在热映电影
    阅读笔记12-Java 面试题 —— 老田的蚂蚁金服面试经历
    SOA架构设计案例分析
    阅读笔记11-孤独后厂村:30万互联网人跳不出的中国硅谷
    阅读笔记09-Java程序员必备的Intellij插件
    阅读笔记08-程序员依然是这个时代,贫寒学子翻身的不二选择
    os.path.join()
  • 原文地址:https://www.cnblogs.com/hate13/p/4045719.html
Copyright © 2011-2022 走看看