zoukankan      html  css  js  c++  java
  • [POJ 2019] Cornfields

    Cornfields
    Time Limit: 1000MS   Memory Limit: 30000K
    Total Submissions: 5516   Accepted: 2714

    Description

    FJ has decided to grow his own corn hybrid in order to help the cows make the best possible milk. To that end, he's looking to build the cornfield on the flattest piece of land he can find. 

    FJ has, at great expense, surveyed his square farm of N x N hectares (1 <= N <= 250). Each hectare has an integer elevation (0 <= elevation <= 250) associated with it. 

    FJ will present your program with the elevations and a set of K (1 <= K <= 100,000) queries of the form "in this B x B submatrix, what is the maximum and minimum elevation?". The integer B (1 <= B <= N) is the size of one edge of the square cornfield and is a constant for every inquiry. Help FJ find the best place to put his cornfield. 

    Input

    * Line 1: Three space-separated integers: N, B, and K. 

    * Lines 2..N+1: Each line contains N space-separated integers. Line 2 represents row 1; line 3 represents row 2, etc. The first integer on each line represents column 1; the second integer represents column 2; etc. 

    * Lines N+2..N+K+1: Each line contains two space-separated integers representing a query. The first integer is the top row of the query; the second integer is the left column of the query. The integers are in the range 1..N-B+1. 

    Output

    * Lines 1..K: A single integer per line representing the difference between the max and the min in each query. 

    Sample Input

    5 3 1
    5 1 2 6 3
    1 3 5 2 7
    7 2 4 6 1
    9 9 8 6 5
    0 6 9 3 9
    1 2
    

    Sample Output

    5
     
    二维RMQ问题 
    矩形解法:
    #include <iostream>
    #include <cstdio>
    #include <cmath>
    using namespace std;
    #define N 255
    
    int n,b,k;
    int val[N][N];
    int mx[N][N][8][8];
    int mi[N][N][8][8];
    
    void ST(int n,int m)
    {
        int i,j,r,c;
        for(i=1;i<=n;i++)
        {
            for(j=1;j<=m;j++)
            {
                mx[i][j][0][0]=mi[i][j][0][0]=val[i][j];
            }
        }
        int kn=(int)(log(double(n))/log(2.0));
        int km=(int)(log(double(m))/log(2.0));
        for(i=0;i<=kn;i++)
        {
            for(j=0;j<=km;j++)
            {
                if(i==0 && j==0)  continue;
                for(r=1;r+(1<<i)-1<=n;r++)
                {
                    for(c=1;c+(1<<j)-1<=m;c++)
                    {
                        if(i==0)
                        {
                            mx[r][c][i][j]=max(mx[r][c][i][j-1],mx[r][c+(1<<(j-1))][i][j-1]);
                            mi[r][c][i][j]=min(mi[r][c][i][j-1],mi[r][c+(1<<(j-1))][i][j-1]);
                        }
                        else
                        {
                            mx[r][c][i][j]=max(mx[r][c][i-1][j],mx[r+(1<<(i-1))][c][i-1][j]);
                            mi[r][c][i][j]=min(mi[r][c][i-1][j],mi[r+(1<<(i-1))][c][i-1][j]);
                        }
                    }
                }
            }
        }
    }
    
    int RMQ(int r1,int c1,int r2,int c2)
    {
        int kr=(int)(log(double(r2-r1+1))/log(2.0));
        int kc=(int)(log(double(c2-c1+1))/log(2.0));
        
        int t1=mx[r1][c1][kr][kc];
        int t2=mx[r2-(1<<kr)+1][c1][kr][kc];
        int t3=mx[r1][c2-(1<<kc)+1][kr][kc];
        int t4=mx[r2-(1<<kr)+1][c2-(1<<kc)+1][kr][kc];
        
        int m1=mi[r1][c1][kr][kc];
        int m2=mi[r2-(1<<kr)+1][c1][kr][kc];
        int m3=mi[r1][c2-(1<<kc)+1][kr][kc];
        int m4=mi[r2-(1<<kr)+1][c2-(1<<kc)+1][kr][kc];
        
        return max(max(t1,t2),max(t3,t4))-min(min(m1,m2),min(m3,m4));
    }
    
    int main()
    {
        int i,j;
        scanf("%d%d%d",&n,&b,&k);
        for(i=1;i<=n;i++)
        {
            for(j=1;j<=n;j++)
            {
                scanf("%d",&val[i][j]);
            }
        }
        ST(n,n);
        while(k--)
        {
            int r1,c1,r2,c2;
            scanf("%d%d",&r1,&c1);
            r2=r1+b-1;
            c2=c1+b-1;
            printf("%d
    ",RMQ(r1,c1,r2,c2));
        }
        return 0;
    }

    正方形解法:

    #include <stdio.h>
    #include <iostream>
    #include <math.h>
    using namespace std;
    #define inf 0x7fffffff
    #define N 255
    #define max(a,b) a>b?a:b
    #define min(a,b) a<b?a:b
    
    int n,b,k;
    int val[N][N];
    int mx[N][N][8];
    int mi[N][N][8];
    
    
    int getMax(int x,int y,int p)
    {
        int res=-inf;
        res=max(res,mx[x][y][p]);
        if(x+(1<<p)<=n) res=max(res,mx[x+(1<<p)][y][p]);
        if(y+(1<<p)<=n) res=max(res,mx[x][y+(1<<p)][p]);
        if(x+(1<<p)<=n && y+(1<<p)<=n) res=max(res,mx[x+(1<<p)][y+(1<<p)][p]);
        return res;
    }
    int getMin(int x,int y,int p)
    {
        int res=inf;
        res=min(res,mi[x][y][p]);
        if(x+(1<<p)<=n) res=min(res,mi[x+(1<<p)][y][p]);
        if(y+(1<<p)<=n) res=min(res,mi[x][y+(1<<p)][p]);
        if(x+(1<<p)<=n && y+(1<<p)<=n) res=min(res,mi[x+(1<<p)][y+(1<<p)][p]);
        return res;
    }
    
    void ST()
    {
        int i,j,k;
        for(i=1;i<=n;i++)
        {
            for(j=1;j<=n;j++)
            {
                mx[i][j][0]=mi[i][j][0]=val[i][j];
            }
        }
        int kn=(int)(log(n*1.0)/log(2.0));
        
        for(k=1;k<=kn;k++) 
        {
            for(i=1;i<=n;i++)
            {
                for(j=1;j<=n;j++)
                {
                    mx[i][j][k]=getMax(i,j,k-1);
                    mi[i][j][k]=getMin(i,j,k-1);
                }
            }
        }
    }
    
    
    int RMQMAX(int x,int y,int b)
    {
        int p=(int)(log(b*1.0)/log(2.0));
        int res=-inf;
        res=max(res,mx[x][y][p]);
        if(x+b-(1<<p)<=n) res=max(res,mx[x+b-(1<<p)][y][p]);
        if(y+b-(1<<p)<=n) res=max(res,mx[x][y+b-(1<<p)][p]);
        if(x+b-(1<<p)<=n && y+b-(1<<p)<=n) res=max(res,mx[x+b-(1<<p)][y+b-(1<<p)][p]);
        return res;
    }
    
    int RMQMIN(int x,int y,int b)
    {
        int p=(int)(log(b*1.0)/log(2.0));
        int res=inf;
        res=min(res,mi[x][y][p]);
        if(x+b-(1<<p)<=n) res=min(res,mi[x+b-(1<<p)][y][p]);
        if(y+b-(1<<p)<=n) res=min(res,mi[x][y+b-(1<<p)][p]);
        if(x+b-(1<<p)<=n && y+b-(1<<p)<=n) res=min(res,mi[x+b-(1<<p)][y+b-(1<<p)][p]);
        return res;
    }
    
    int main()
    {
        int i,j;
        scanf("%d%d%d",&n,&b,&k);
        for(i=1;i<=n;i++)
        {
            for(j=1;j<=n;j++)
            {
                scanf("%d",&val[i][j]);
            }
        }
        ST();
        while(k--)
        {
            int x,y;
            scanf("%d%d",&x,&y);
            printf("%d
    ",RMQMAX(x,y,b)-RMQMIN(x,y,b));
        }
        return 0;
    }
    趁着还有梦想、将AC进行到底~~~by 452181625
  • 相关阅读:
    下午不想写代码了,写个shelve的模块使用(简单实用的小型数据库)。
    io,pickle,json,一把梭哈,把这三个模块都讲了。
    import 和 __import__的区别
    namedtuple工厂函数,创造一个像实例对象的元祖(感觉到了Python的奇妙与可爱之处)。
    写一下base64字节码转换工具。
    Python加密模块的hashlib,hmac模块介绍。
    简述Orderdict,defaultdcit,ChainMap以及MappingProxyType
    工作中碰到的小问题,如何对列表内的字典排序,以及operator.itemgetter介绍。
    最近在写一个虚拟币搬砖脚本,几条建议备注下。
    Python的re,正则表达式,希望这次比较能让我记住里面的80%以上。(未完成,待继续)
  • 原文地址:https://www.cnblogs.com/hate13/p/4045719.html
Copyright © 2011-2022 走看看