zoukankan      html  css  js  c++  java
  • [HDU 1159] Common Subsequence

    Common Subsequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 26958    Accepted Submission(s): 11994

    Problem Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 
     
    Sample Input
    abcfbc abfcab programming contest abcd mnp
     
    Sample Output
    4 2 0
     
    Source
    Southeastern Europe 2003
     
    没什么好说的,上代码
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    using namespace std;
    #define max(a,b) a>b?a:b
    #define INF 0x7ffffff
    #define N 1010
    
    int dp[N][N]; //dp[i][j]表示a中前i个字符和b中前j个字符的最长公共子序列
    char s1[N],s2[N];
    
    int main()
    {
        int i,j;
        while(scanf("%s%s",s1+1,s2+1)!=EOF)
        {
            int l1=strlen(s1+1);
            int l2=strlen(s2+1);
            memset(dp,0,sizeof(dp));
            for(i=1;i<=l1;i++)
            {
                for(j=1;j<=l2;j++)
                {
                    if(s1[i]==s2[j])
                    {
                        dp[i][j]=dp[i-1][j-1]+1;
                    }
                    else
                    {
                        dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
                    }
                }
            }
            cout<<dp[l1][l2]<<endl;
        }
        return 0;
    }
    趁着还有梦想、将AC进行到底~~~by 452181625
  • 相关阅读:
    洛谷P1036 选数
    洛谷 P1009 阶乘之和
    codevs 4165 ​高精度求阶乘
    codevs 1553 互斥的数
    P2421 A-B数对(增强版)
    51nod 1081 子段求和
    codevs 3054 高精度练习-文件操作
    无聊写的高精的斐波那契数列
    51nod 1347 旋转字符串
    51nod 1212 无向图最小生成树(Kruskal模版题)
  • 原文地址:https://www.cnblogs.com/hate13/p/4050418.html
Copyright © 2011-2022 走看看