zoukankan      html  css  js  c++  java
  • [HDU 1159] Common Subsequence

    Common Subsequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 26958    Accepted Submission(s): 11994

    Problem Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 
     
    Sample Input
    abcfbc abfcab programming contest abcd mnp
     
    Sample Output
    4 2 0
     
    Source
    Southeastern Europe 2003
     
    没什么好说的,上代码
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    using namespace std;
    #define max(a,b) a>b?a:b
    #define INF 0x7ffffff
    #define N 1010
    
    int dp[N][N]; //dp[i][j]表示a中前i个字符和b中前j个字符的最长公共子序列
    char s1[N],s2[N];
    
    int main()
    {
        int i,j;
        while(scanf("%s%s",s1+1,s2+1)!=EOF)
        {
            int l1=strlen(s1+1);
            int l2=strlen(s2+1);
            memset(dp,0,sizeof(dp));
            for(i=1;i<=l1;i++)
            {
                for(j=1;j<=l2;j++)
                {
                    if(s1[i]==s2[j])
                    {
                        dp[i][j]=dp[i-1][j-1]+1;
                    }
                    else
                    {
                        dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
                    }
                }
            }
            cout<<dp[l1][l2]<<endl;
        }
        return 0;
    }
    趁着还有梦想、将AC进行到底~~~by 452181625
  • 相关阅读:
    各大网站收录、搜索引擎的提交入口
    个性注释
    css3 content 生成内容
    C# 的三种序列化方法
    C# 文件下载四方法
    AngularJS 預設模組 select 標籤的 ngOptions 參數用法
    null与undefined
    第三次作业--林枫
    第二次作业--林枫
    第一次作业--林枫
  • 原文地址:https://www.cnblogs.com/hate13/p/4050418.html
Copyright © 2011-2022 走看看