zoukankan      html  css  js  c++  java
  • [POJ 2891] Strange Way to Express Integers

    Strange Way to Express Integers
    Time Limit: 1000MS   Memory Limit: 131072K
    Total Submissions: 10907   Accepted: 3336

    Description

    Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

    Choose k different positive integers a1, a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1, a2, …, ak are properly chosen, m can be determined, then the pairs (ai, ri) can be used to express m.

    “It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

    Since Elina is new to programming, this problem is too difficult for her. Can you help her?

    Input

    The input contains multiple test cases. Each test cases consists of some lines.

    • Line 1: Contains the integer k.
    • Lines 2 ~ k + 1: Each contains a pair of integers ai, ri (1 ≤ i ≤ k).

    Output

    Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

    Sample Input

    2
    8 7
    11 9

    Sample Output

    31
     
    中国剩余定理、
    #include <iostream>
    #include <cstdio>
    #include <cmath>
    #include <cstring>
    using namespace std;
    #define ll long long
    #define N 10010
    
    ll exgcd(ll a,ll b,ll& x, ll& y)
    {
        if(b==0)
        {
            x=1;
            y=0;
            return a;
        }
        ll d=exgcd(b,a%b,y,x);
        y-=a/b*x;
        return d;
    }
    bool solve(ll &m0,ll &a0,ll m,ll a)
    {
        ll y,x;
        ll g=exgcd(m0,m,x,y);
        if((a-a0)%g) return 0;
        x*=(a-a0)/g;
        x%=m/g;
        a0=(x*m0+a0);
        m0*=m/g;
        a0%=m0;
        if(a0<0) a0+=m0;
        return 1;
    }
    bool MLES(ll m[],ll r[],ll &m0 ,ll &a0,ll n)
    {
        m0=1;
        a0=0;
        bool flag=1;
        for(ll i=0;i<n;i++)
        {
            if(!solve(m0,a0,m[i],r[i]))
            {
                flag=0;
                break;
            }
        }
        return flag;
    }
    int main()
    {
        ll n;
        ll m[N],r[N];
        while(scanf("%lld",&n)!=EOF)
        {
            for(ll i=0;i<n;i++)
            {
                scanf("%lld%lld",&m[i],&r[i]);
            }
            ll m0,a0;
            ll flag=MLES(m,r,m0,a0,n);
            if(flag) printf("%lld
    ",a0);
            else printf("-1
    ");
        }
        return 0;
    }
    趁着还有梦想、将AC进行到底~~~by 452181625
  • 相关阅读:
    <Redis开发与运维> 阅读笔记
    请求行,请求头,请求体详解
    char 与 varchar 的区别
    python字符串的常用方法。
    快速排序的代码及原理
    C#之Dictionary源码
    C#中构造函数
    U3D——单例模式的用法
    U3D学习——设置VS2019作为开发工具
    U3D学习——脚本运行周期
  • 原文地址:https://www.cnblogs.com/hate13/p/4442977.html
Copyright © 2011-2022 走看看