zoukankan      html  css  js  c++  java
  • [LA 3887] Slim Span

    3887 - Slim Span
    Time limit: 3.000 seconds

    Given an undirected weighted graph G <tex2html_verbatim_mark>, you should find one of spanning trees specified as follows.

    The graph G <tex2html_verbatim_mark>is an ordered pair (VE) <tex2html_verbatim_mark>, where V <tex2html_verbatim_mark>is a set of vertices {v1v2,..., vn} <tex2html_verbatim_mark>and E <tex2html_verbatim_mark>is a set of undirected edges {e1e2,..., em} <tex2html_verbatim_mark>. Each edge e $ in$ E <tex2html_verbatim_mark>has its weight w(e) <tex2html_verbatim_mark>.

    A spanning tree T <tex2html_verbatim_mark>is a tree (a connected subgraph without cycles) which connects all the n <tex2html_verbatim_mark>vertices with n - 1 <tex2html_verbatim_mark>edges. The slimness of a spanning tree T <tex2html_verbatim_mark>is defined as the difference between the largest weight and the smallest weight among the n - 1 <tex2html_verbatim_mark>edges of T <tex2html_verbatim_mark>.

    epsfbox{p3887a.eps}<tex2html_verbatim_mark>

    For example, a graph G <tex2html_verbatim_mark>in Figure 5(a) has four vertices {v1v2v3v4} <tex2html_verbatim_mark>and five undirected edges {e1e2,e3e4e5} <tex2html_verbatim_mark>. The weights of the edges are w(e1) = 3 <tex2html_verbatim_mark>, w(e2) = 5 <tex2html_verbatim_mark>, w(e3) = 6 <tex2html_verbatim_mark>, w(e4) = 6 <tex2html_verbatim_mark>, w(e5) = 7 <tex2html_verbatim_mark>as shown in Figure 5(b).

    =6in epsfbox{p3887b.eps}<tex2html_verbatim_mark>

    There are several spanning trees for G <tex2html_verbatim_mark>. Four of them are depicted in Figure 6(a)∼(d). The spanning tree Ta<tex2html_verbatim_mark>in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta <tex2html_verbatim_mark>is 4. The slimnesses of spanning trees Tb <tex2html_verbatim_mark>, Tc <tex2html_verbatim_mark>and Td <tex2html_verbatim_mark>shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td <tex2html_verbatim_mark>in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

    Your job is to write a program that computes the smallest slimness.

    Input 

    The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

    n <tex2html_verbatim_mark>m <tex2html_verbatim_mark>
    a1 <tex2html_verbatim_mark>b1 <tex2html_verbatim_mark>w1 <tex2html_verbatim_mark>
    $ vdots$ <tex2html_verbatim_mark>
    am <tex2html_verbatim_mark>bm <tex2html_verbatim_mark>wm <tex2html_verbatim_mark>

    Every input item in a dataset is a non-negative integer. Items in a line are separated by a space.


    n <tex2html_verbatim_mark>is the number of the vertices and m <tex2html_verbatim_mark>the number of the edges. You can assume 2$ le$n$ le$100 <tex2html_verbatim_mark>and 0$ le$m$ le$n(n - 1)/2<tex2html_verbatim_mark>. ak <tex2html_verbatim_mark>and bk <tex2html_verbatim_mark>(k = 1,..., m) <tex2html_verbatim_mark>are positive integers less than or equal to n <tex2html_verbatim_mark>, which represent the two verticesvak <tex2html_verbatim_mark>and vbk <tex2html_verbatim_mark>connected by the k <tex2html_verbatim_mark>-th edge ek <tex2html_verbatim_mark>. wk <tex2html_verbatim_mark>is a positive integer less than or equal to 10000, which indicates the weight of ek <tex2html_verbatim_mark>. You can assume that the graph G = (VE) <tex2html_verbatim_mark>is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

    Output 

    For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, `-1' should be printed. An output should not contain extra characters.

    Sample Input 

    4 5 
    1 2 3
    1 3 5
    1 4 6
    2 4 6
    3 4 7
    4 6 
    1 2 10 
    1 3 100 
    1 4 90 
    2 3 20 
    2 4 80 
    3 4 40 
    2 1 
    1 2 1
    3 0 
    3 1 
    1 2 1
    3 3 
    1 2 2
    2 3 5 
    1 3 6 
    5 10 
    1 2 110 
    1 3 120 
    1 4 130 
    1 5 120 
    2 3 110 
    2 4 120 
    2 5 130 
    3 4 120 
    3 5 110 
    4 5 120 
    5 10 
    1 2 9384 
    1 3 887 
    1 4 2778 
    1 5 6916 
    2 3 7794 
    2 4 8336 
    2 5 5387 
    3 4 493 
    3 5 6650 
    4 5 1422 
    5 8 
    1 2 1 
    2 3 100 
    3 4 100 
    4 5 100 
    1 5 50 
    2 5 50 
    3 5 50 
    4 1 150 
    0 0

    Sample Output 

    1 
    20 
    0 
    -1 
    -1 
    1 
    0 
    1686 
    50

    枚举最小边,求得MST
    #include <iostream>
    #include <cstring>
    #include <algorithm>
    #include <cstdio>
    using namespace std;
    #define INF 0x3f3f3f3f
    #define N 110
    #define M 100010
    
    struct Edge
    {
        int u,v,w;
        bool operator <(const Edge &t)const
        {
            return w<t.w;
        }
    }edge[M];
    
    int n,m;
    int f[N];
    
    void init()
    {
        for(int i=1;i<=n;i++) f[i]=i;
    }
    int Find(int x)
    {
        if(x!=f[x]) f[x]=Find(f[x]);
        return f[x];
    }
    bool UN(int x,int y)
    {
        x=Find(x);
        y=Find(y);
        if(x==y) return 0;
        f[x]=y;
        return 1;
    }
    int kruskal(int s)
    {
        init();
        int ret;
        for(int i=s;i<=m;i++)
        {
            if(UN(edge[i].u,edge[i].v)) ret=edge[i].w;
        }
        int cnt=0;
        for(int i=1;i<=n;i++) if(f[i]==i) cnt++;
        if(cnt>1) return -1;
        return ret;
    }
    int main()
    {
        int ans;
        while(scanf("%d%d",&n,&m),n||m)
        {
            ans=INF;
            for(int i=1;i<=m;i++) scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].w);
            sort(edge+1,edge+m+1);
            for(int i=1;i<=m;i++)
            {
                int t=kruskal(i);
                if(t==-1) break;
                ans=min(ans,t-edge[i].w);
            }
            if(ans==INF) ans=-1;
            printf("%d
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    同时实现同时只允许一个人登录系统 dodo
    比较C#中的readonly与const (转) dodo
    iframe,Frame中关于Session丢失的解决方法 dodo
    sqlserver数据库同步解决方案 dodo
    利用C#调用WINRAR实现压缩与解压 dodo
    .net打包自动安装数据库 dodo
    关于sqlserver packet size dodo
    真正生成高质量不变形缩略图片 dodo
    Datagrid列表控件使用 dodo
    NUnit学习之VS.net 2005篇(转) dodo
  • 原文地址:https://www.cnblogs.com/hate13/p/4566369.html
Copyright © 2011-2022 走看看