zoukankan      html  css  js  c++  java
  • 图像滤波处理和直方图均衡化

    高斯滤波:

     1 #include<iostream>
     2 #include <opencv2/core/core.hpp>
     3 #include <opencv2/highgui/highgui.hpp>
     4 #include <opencv2/imgproc/imgproc.hpp>
     5 #include "guassfilter.h"
     6 
     7 using namespace std;
     8 using namespace cv;
     9 
    10 double **GuassKenel(int size, double sigma) {
    11     int i, j;
    12     double sum = 0.0;
    13     int center = size / 2;
    14     const double PI = 4.0*atan(1.0); //圆周率π赋值
    15 
    16     double **arr = new double*[size];//建立一个size*size大小的二维数组
    17     for (i = 0; i < size; i++)
    18         arr[i] = new double[size];
    19 
    20     for (i = 0; i < size; i++)
    21         for (j = 0; j < size; j++) {
    22             arr[i][j] = (1 / (2 * PI*sigma*sigma))*exp(-((i - center)*(i - center) + (j - center)*(j - center)) / (sigma*sigma * 2));
    23             sum += arr[i][j];
    24         }
    25     for (i = 0; i < size; i++) {
    26         for (j = 0; j < size; j++)
    27             arr[i][j] /= sum;
    28     }
    29     return arr;
    30 }
    31 
    32 
    33 void GaussFilter(const Mat _src, Mat &_dst, int ksize, double ksigma) {
    34 
    35     if (!_src.data) return;
    36     double **arra;
    37     Mat tmp(_src.size(), _src.type());
    38     for (int i = 0; i < _src.rows; i++)
    39         for (int j = 0; j < _src.cols; j++) {
    40             //边缘不进行处理
    41             if ((i - (ksize / 2)) > 0 && (i + (ksize / 2))  < _src.rows && (j - (ksize / 2)) > 0 && (j + (ksize / 2)) < _src.cols) {
    42                 arra = GuassKenel(ksize, ksigma);
    43                 tmp.at<uchar>(i, j) = 0;
    44                 for (int x = 0; x < ksize; x++) {
    45                     for (int y = 0; y < ksize; y++) {
    46                         tmp.at<uchar>(i, j) += arra[x][y] * _src.at<uchar>(i + (ksize / 2) - x, j + (ksize / 2) - y);
    47                     }
    48                 }
    49             }
    50             else {
    51                 tmp.at<uchar>(i, j) = _src.at<uchar>(i, j);
    52             }
    53         }
    54     tmp.copyTo(_dst);
    55 }
    View Code

    拉普拉斯滤波:

    #include <iostream>
    #include <opencv2/core/core.hpp>
    #include <opencv2/highgui/highgui.hpp>
    #include <opencv2/imgproc/imgproc.hpp>
    #include "laplace.h"
    
    using namespace std;
    using namespace cv;
    
    void LaplaceFilter(const Mat _src, Mat & _dst) {
    
        if (!_src.data) return;
        Mat tmp(_src.size(), _src.type());
        for (int i = 0; i < _src.rows; i++) {
            for (int j = 0; j < _src.cols; j++) {
                if ((i - 1) > 0 && (i + 1)  < _src.rows && (j - 1) > 0 && (j + 1) < _src.cols) {
                    double arra[3][3] = { { 0,-1,0 },{ -1,5,-1 },{ 0,-1,0 } };
                    tmp.at<uchar>(i, j) = 0;
                    for (int x = 0; x < 3; x++) {
                        for (int y = 0; y < 3; y++) {
                            tmp.at<uchar>(i, j) += arra[x][y] * _src.at<uchar>(i + 1 - x, j + 1 - y);
                        }
                    }
                }
                else {
                    tmp.at<uchar>(i, j) = _src.at<uchar>(i, j);
                }
            }
        }
        tmp.copyTo(_dst);
    }
    View Code

     均值滤波:

     1 #include <iostream>
     2 #include <opencv2/core/core.hpp>
     3 #include <opencv2/highgui/highgui.hpp>
     4 #include <opencv2/imgproc/imgproc.hpp>
     5 #include "meanfilter.h"
     6 
     7 using namespace std;
     8 using namespace cv;
     9 
    10 double **MeanKenel(int size) {
    11     double **arr = new double*[size];//建立一个size*size大小的二维数组
    12     for (int i = 0; i < size; i++)
    13         arr[i] = new double[size];
    14 
    15     for (int i = 0; i < size; i++) {
    16         for (int j = 0; j < size; j++) {
    17             arr[i][j] = 1.0 / 9;
    18         }
    19     }
    20     return arr;
    21 }
    22 
    23 void MeanFilter(const Mat _src, Mat & _dst, int ksize) {
    24 
    25     if (!_src.data) return;
    26     double **arra;
    27     Mat tmp(_src.size(), _src.type());
    28     for (int i = 0; i < _src.rows; i++) {
    29         for (int j = 0; j < _src.cols; j++) {
    30             if ((i - (ksize / 2)) > 0 && (i + (ksize / 2))  < _src.rows && (j - (ksize / 2)) > 0 && (j + (ksize / 2)) < _src.cols) {
    31                 arra = MeanKenel(ksize);
    32                 tmp.at<uchar>(i, j) = 0;
    33                 for (int x = 0; x < ksize; x++) {
    34                     for (int y = 0; y < ksize; y++) {
    35                         tmp.at<uchar>(i, j) += arra[x][y] * _src.at<uchar>(i + (ksize / 2) - x, j + (ksize / 2) - y);
    36                     }
    37                 }
    38             }
    39             else {
    40                 tmp.at<uchar>(i, j) = _src.at<uchar>(i, j);
    41             }
    42         }
    43     }
    44     tmp.copyTo(_dst);
    45 }
    View Code

    直方图均衡化:

     1 #include <iostream>
     2 #include <opencv2/core/core.hpp>
     3 #include <opencv2/highgui/highgui.hpp>
     4 #include <opencv2/imgproc/imgproc.hpp>
     5 #include "equalization.h"
     6 
     7 using namespace std;
     8 using namespace cv;
     9 
    10 
    11 
    12 void Equalization(Mat& input, Mat &_dst)
    13 {
    14     int gray[256] = { 0 };  //记录每个灰度级别下的像素个数
    15     double gray_prob[256] = { 0 };  //记录灰度分布密度
    16     double gray_distribution[256] = { 0 };  //记录累计密度
    17     int gray_equal[256] = { 0 };  //均衡化后的灰度值
    18     int gray_sum = 0;  //像素总数
    19     Mat output = input.clone();
    20     gray_sum = input.cols * input.rows;
    21 
    22     //统计每个灰度下的像素个数
    23     for (int i = 0; i < input.rows; i++)
    24     {
    25         uchar* p = input.ptr<uchar>(i);
    26         for (int j = 0; j < input.cols; j++)
    27         {
    28             int vaule = p[j];
    29             gray[vaule]++;
    30         }
    31     }
    32 
    33 
    34     //统计灰度频率
    35     for (int i = 0; i < 256; i++)
    36     {
    37         gray_prob[i] = ((double)gray[i] / gray_sum);
    38     }
    39 
    40     //计算累计密度
    41     gray_distribution[0] = gray_prob[0];
    42     for (int i = 1; i < 256; i++)
    43     {
    44         gray_distribution[i] = gray_distribution[i - 1] + gray_prob[i];
    45     }
    46 
    47     //重新计算均衡化后的灰度值,四舍五入。参考公式:(N-1)*T+0.5
    48     for (int i = 0; i < 256; i++)
    49     {
    50         gray_equal[i] = (uchar)(255 * gray_distribution[i] + 0.5);
    51     }
    52 
    53 
    54     //直方图均衡化,更新原图每个点的像素值
    55     for (int i = 0; i < output.rows; i++)
    56     {
    57         uchar* p = output.ptr<uchar>(i);
    58         for (int j = 0; j < output.cols; j++)
    59         {
    60             p[j] = gray_equal[p[j]];
    61         }
    62     }
    63 
    64     output.copyTo(_dst);
    65 }
    View Code

     主函数:

     1 #include <iostream>
     2 #include <opencv2/core/core.hpp>
     3 #include <opencv2/highgui/highgui.hpp>
     4 #include <opencv2/imgproc/imgproc.hpp>
     5 #include "guassfilter.h"
     6 #include "meanfilter.h"
     7 #include "laplace.h"
     8 #include "equalization.h"
     9 
    10 using namespace std;
    11 using namespace cv;
    12 
    13 int main() {
    14 
    15     Mat image = imread("D:\研一\图像处理与计算机视觉\图像处理作业\img.jpg", 0);
    16     Mat gauss1, gauss2, gauss3, mean, laplace, equalization;
    17     int a, b, c, d;
    18     double e, f, g;
    19     cout << "请输入第一次高斯滤波器模板的阶数和方差:" << endl;
    20     cin >> a >> e;
    21     cout << "请输入第二次高斯滤波器模板的阶数和方差:" << endl;
    22     cin >> b >> f;
    23     cout << "请输入第三次高斯滤波器模板的阶数和方差:" << endl;
    24     cin >> c >> g;
    25     cout << "请输入均值滤波器模板的阶数:" << endl;
    26     cin >> d;
    27     cout << "拉普拉斯滤波器卷积核固定选为:" << endl <<" "<< 0 << " " << -1 << "  " << 0 << endl << -1 << "  " << 5 << " " << -1 << endl <<" "<< 0 << " " << -1 << "  " << 0 << endl;
    28     GaussFilter(image, gauss1, a, e);
    29     GaussFilter(image, gauss2, b, f);
    30     GaussFilter(image, gauss3, c, g);
    31     MeanFilter(image, mean, d);
    32     LaplaceFilter(image, laplace);
    33     Equalization(image, equalization);
    34 
    35     namedWindow("原图");
    36     namedWindow("高斯滤波器1");
    37     namedWindow("高斯滤波器2");
    38     namedWindow("高斯滤波器3");
    39     namedWindow("均值滤波器");
    40     namedWindow("拉普拉斯滤波器");
    41     namedWindow("直方图均衡化");
    42 
    43     imshow("原图", image);
    44     imshow("高斯滤波器1", gauss1);
    45     imshow("高斯滤波器2", gauss2);
    46     imshow("高斯滤波器3", gauss3);
    47     imshow("均值滤波器",mean);
    48     imshow("拉普拉斯滤波器", laplace);
    49     imshow("直方图均衡化", equalization);
    50 
    51     imwrite("原图.jpg", image);
    52     imwrite("高斯滤波器1.jpg", gauss1);
    53     imwrite("高斯滤波器2.jpg", gauss2);
    54     imwrite("高斯滤波器3.jpg", gauss3);
    55     imwrite("均值滤波器.jpg", mean);
    56     imwrite("拉普拉斯滤波.jpg", laplace);
    57     imwrite("直方图均衡化.jpg", equalization);
    58 
    59     waitKey();
    60     return 0;
    61 }
    View Code
  • 相关阅读:
    求第N个素数
    HDU1568
    HDU1003 DP
    POJ 1016 模拟字符串
    POJ 3321 树状数组(+dfs+重新建树)
    UVA12532 线段树(单点更新,区间求乘积的正负)
    POJ2488 dfs
    POJ 1195 二维树状数组
    HDU 4006 优先队列
    优先队列
  • 原文地址:https://www.cnblogs.com/hati/p/9214221.html
Copyright © 2011-2022 走看看