zoukankan      html  css  js  c++  java
  • 各类数据集/模型之间的转换

    datasets:

    1.voc转tfrecords:

    • step1. 准备数据集,参见labelImg工具

    • step2.下载工具raccoon_dataset[https://github.com/datitran/raccoon_dataset]并分配好数据集

    • step3. 运行脚本xml_to_csv.py
      得到csv

    • step4. 运行脚本generate_tfrecord.py
      得到tfrecord. 我在本地运行时候git上直接取下来的脚本运行报错,改为以下代码调试通过,可以试一下:

    """
    Usage:
      # From tensorflow/models/
      # Create train data:
      python generate_tfrecord.py --csv_input=data/train_labels.csv  --output_path=train.record
    
      # Create test data:
      python generate_tfrecord.py --csv_input=data/test_labels.csv  --output_path=test.record
    """
     
     
    import os
    import io
    import pandas as pd
    import tensorflow as tf
    from PIL import Image
    from utils import dataset_util
    from collections import namedtuple, OrderedDict
    
     
    # os.chdir('./images/test')
     
    flags = tf.app.flags
    flags.DEFINE_string('csv_input','/mnt/c/NXP/mobileNetv2_SSD/models-master/research/object_detection/labels_test.csv','Path to the CSV input')
    flags.DEFINE_string('output_path','/mnt/c/NXP/mobileNetv2_SSD/models-master/research/object_detection/test.record','Path to output TFRecord')
    #flags.DEFINE_string('image_dir','C:\NXP\mobileNetv2_SSD\models-master//research//object_detection//images//train_val//', 'Path to images')
    FLAGS = flags.FLAGS
     
     
    # TO-DO replace this with label map
    def class_text_to_int(row_label):
        if row_label == 'tcorner':     # 需改动为自己的分类
            return 1
        if row_label == 'corner': 
            return 2
        if row_label == 'crosscorner': 
            return 3
        else:
             None
    
     
     
    def split(df, group):
        data = namedtuple('data', ['filename', 'object'])
        gb = df.groupby(group)
        return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]
     
     
    def create_tf_example(group, path):
        encoded_jpg = tf.gfile.FastGFile(os.path.join(path, '{}'.format(group.filename)), 'rb').read()
        encoded_jpg_io = io.BytesIO(encoded_jpg)
        image = Image.open(encoded_jpg_io)
        width, height = image.size
     
        filename = group.filename.encode('utf8')
        image_format = b'jpg'
        xmins = []
        xmaxs = []
        ymins = []
        ymaxs = []
        classes_text = []
        classes = []
     
        for index, row in group.object.iterrows():
            xmins.append(row['xmin'] / width)
            xmaxs.append(row['xmax'] / width)
            ymins.append(row['ymin'] / height)
            ymaxs.append(row['ymax'] / height)
            classes_text.append(row['class'].encode('utf8'))
            classes.append(class_text_to_int(row['class']))
     
        tf_example = tf.train.Example(features=tf.train.Features(feature={
            'image/height': dataset_util.int64_feature(height),
            'image/width': dataset_util.int64_feature(width),
            'image/filename': dataset_util.bytes_feature(filename),
            'image/source_id': dataset_util.bytes_feature(filename),
            'image/encoded': dataset_util.bytes_feature(encoded_jpg),
            'image/format': dataset_util.bytes_feature(image_format),
            'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
            'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
            'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
            'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
            'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
            'image/object/class/label': dataset_util.int64_list_feature(classes),
        }))
        return tf_example
     
     
    def main():
        writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
        # path = os.path.join(os.getcwd(), 'test')         #  有问题,此处用绝对地址出错,用相对 
          #地址正确,网友可以测试下,有其他答案可留言
        path='/mnt/c/NXP/mobileNetv2_SSD/models-master/research/object_detection/images/test/' #图片所在文件夹
    
        examples = pd.read_csv(FLAGS.csv_input)
        grouped = split(examples, 'filename')
        for group in grouped:
            tf_example = create_tf_example(group, path)
            writer.write(tf_example.SerializeToString())
     
        writer.close()
        output_path = os.path.join(os.getcwd(), FLAGS.output_path)
        print('Successfully created the TFRecords: {}'.format(output_path))
     
    if __name__ == '__main__':
        main()
    
  • 相关阅读:
    洛谷P5304 [GXOI/GZOI2019]旅行者
    洛谷P3758 [TJOI2017]可乐
    洛谷P5341 [TJOI2019]甲苯先生和大中锋的字符串
    洛谷P5338 [TJOI2019]甲苯先生的滚榜
    洛谷P5340 [TJOI2019]大中锋的游乐场
    AC自动机
    左偏树(可并堆)实现
    splay区间翻转
    平衡树模板【splay的实现】
    洛谷P4113 [HEOI2012]采花
  • 原文地址:https://www.cnblogs.com/hayley111/p/13182836.html
Copyright © 2011-2022 走看看