最近在恶补算法,写一写经典的排序算法,先贴上各个复杂度对比图:
1.冒泡法排序
1 def bubble_sort(lists): 2 count = len(lists) 3 for i in range(count): 4 for j in range(i+1,count): 5 if lists[j] < lists[i]: 6 lists[i], lists[j] = lists[j], lists[i] 7 return lists
总结:
最好情况:n-1次,时间复杂度为O(n)
最坏情况:1+2+···+(n-1),时间复杂度为O(n2)
2.简单选择排序
def select_sort(lists): count = len(lists) for i in range(lists): m = i for j in range(i+1, count): if lists[j] < lists[min]: m = j lists[i], lists[min] = lists[min], lists[i] return lists
总结:
最好情况和最坏情况一致:1+2+···+(n-1),时间复杂度为O(n2)
3.插入排序
def insert_sort(lists): count = len(lists) for i in range(1, count): key = lists[i] j = i - 1 while j >= 0: if lists[j] > key: lists[j+1] = lists[j] lists[j] = key j -= 1 return lists
总结:
最好的情况:排序本身就是有序的,时间复杂度为O(n)
最坏的情况:排序是逆序,时间复杂度为O(n2)
4.希尔排序
def shell_sort(list): step = len(list)/2 while step > 0: for i in range(step, len(list)): while i > step and list[i] > list[i-step]: list[i], list[i-step] = list[i-step], list[i] i -= step step = step/2 return list
总结:
最好的情况和最坏的情况:时间复杂度为O(n*log2n)
希尔排序的时间复杂度与step有关,但是没有证明出来。此结论与上表有区别,上表希尔排序的最优情况是改进的希尔排序或者是选择不同step的结果!
5.堆排序
def MAX_Heapify(heap,HeapSize,root): left = 2*root + 1 right = left + 1 larger = root if left < HeapSize and heap[larger] < heap[left]: larger = left if right < HeapSize and heap[larger] < heap[right]: larger = right if larger != root: heap[larger],heap[root] = heap[root],heap[larger] MAX_Heapify(heap, HeapSize, larger) def Build_MAX_Heap(heap): HeapSize = len(heap) for i in xrange((HeapSize -2)//2,-1,-1): MAX_Heapify(heap,HeapSize,i) def HeapSort(heap): Build_MAX_Heap(heap) for i in range(len(heap)-1,-1,-1): heap[0],heap[i] = heap[i],heap[0] MAX_Heapify(heap, i, 0) return heap
总结:
堆排序的时间复杂度为O(n*log2n),不稳定,不适合排序个数较少的情况
6.并归排序
1 def merge_sort(list): 2 if len(list) <= 1: 3 return list 4 num = len(list)/2 5 left = merge_sort(list[:num]) 6 right = merge_sort(list[num:]) 7 return merge(left, right) 8 def merge(left, right): 9 i,j = 0,0 10 result = [] 11 while i < len(left) and j < len(right): 12 if left[i] <= right[j]: 13 result.append(left[i]) 14 i += 1 15 else: 16 result.append(right[j]) 17 j += 1 18 result += left[i:] 19 result += right[j:] 20 return result
总结:
最好情况和最坏情况一样,时间复杂度都为O(n*log2n)
7.快速排序
def quick_sort(list, left, right): if left < right: return list list[left] = key low = left high = right while left < right: while left < right and list[right] >= key: right -= 1 list[right], left[left] = list[left], left[right] while left < right and list[left] <= key: left += 1 list[right], left[left] = list[left], left[right] pivot = left quick_sort(list, low, pivot-1) quick_sort(list, pivot+1, high) return list
总结:
最好情况:时间复杂度为O(n*log2n)
最坏情况:时间复杂度为O(n2)
空间复杂度为O(n*log2n)
8.基数排序
1 import math 2 def radix_sort(list, radix=10): 3 k = int(math.ceil(math.log(max(a), radix))) 4 bucket = [[] for i in range(radix)] 5 for i in range(1, K+1): 6 for val in list: 7 bucket[val%(radix**i)/(radix**(i-1))].append(val) 8 del a[:] 9 for each in bucket: 10 list += each 11 del each[:] 12 return list
总结:
最好情况:时间复杂度为O(d*(n+r*d))
最坏情况:时间复杂度为O(d*(r+n))
写在最后:
安利一个神奇的东西,百度词条。
各种语言版本的排序应有尽有,你值得参考!
还安利一个博客:
http://ahalei.blog.51cto.com/
啊哈磊的博客,里面对各种算法的思想讲的很透彻,值得一看!