题目链接
LOJ:https://loj.ac/problem/2002
洛谷:https://www.luogu.org/problemnew/show/P3702
Solution
考虑补集转换,用所有数减去只用合数的方案数,我们先考虑算所有数的
首先可以得到一个普及组( m dp),(f_{i,j})表示当前填了前(i)个,总和({ m mod} p)为(j)的方案数。
记录一个(cnt_i)表示({ m mod} p)为(i)的数的个数。
转移就是(f_{i,j}=sum_{k=0}^{p-1}f_{i-1,(j-k){ m mod} p}cdot cnt_k)。
然后我们拿矩阵大力优化这个转移就可以过了。
复杂度(O(p^3log n))。
#include<bits/stdc++.h>
using namespace std;
void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
}
void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('
');}
#define lf double
#define ll long long
#define pii pair<int,int >
#define vec vector<int >
#define pb push_back
#define mp make_pair
#define fr first
#define sc second
#define FOR(i,l,r) for(int i=l,i##_r=r;i<=i##_r;i++)
const int maxm = 2e7+10;
const int inf = 1e9;
const lf eps = 1e-8;
const int mod = 20170408;
int add(int x,int y) {return x+y>=mod?x+y-mod:x+y;}
int del(int x,int y) {return x-y<0?x-y+mod:x-y;}
int mul(int x,int y) {return 1ll*x*y-1ll*x*y/mod*mod;}
int n,m,p;
struct Matrix {
int a[102][102];
Matrix () {memset(a,0,sizeof a);}
Matrix operator * (const Matrix &r) const {
Matrix c;
for(int i=0;i<p;i++)
for(int j=0;j<p;j++)
for(int k=0;k<p;k++)
c.a[i][j]=add(c.a[i][j],mul(a[i][k],r.a[k][j]));
return c;
}
};
Matrix qpow(Matrix a,int x) {
Matrix res;for(int i=0;i<p;i++) res.a[i][i]=1;
for(;x;x>>=1,a=a*a) if(x&1) res=res*a;
return res;
}
int pri[maxm],vis[maxm],tot,cnt1[102],cnt2[102];
void sieve() {
cnt1[1]=cnt2[1]=1;
for(int i=2;i<=m;i++) {
if(!vis[i]) pri[++tot]=i;
else cnt2[i%p]++;
cnt1[i%p]++;
for(int j=1;j<=tot&&i*pri[j]<=m;j++) {
vis[i*pri[j]]=1;
if(i%pri[j]==0) break;
}
}
}
int solve(int *t) {
Matrix tp,res;
for(int i=0;i<p;i++)
for(int j=0;j<p;j++) tp.a[i][j]=t[(i-j+p)%p];
for(int i=0;i<p;i++) res.a[i][0]=t[i];
return (qpow(tp,n-1)*res).a[0][0];
}
int main() {
read(n),read(m),read(p);sieve();
write(del(solve(cnt1),solve(cnt2)));
return 0;
}