zoukankan      html  css  js  c++  java
  • 「AHOI / HNOI2017」单旋

    「AHOI / HNOI2017」单旋

    题目链接

    H 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构。伸展树(splay)是一种数据结构,因为代码好写,功能多,效率高,掌握这种数据结构成为了 H 国的必修技能。有一天,邪恶的「卡」带着他的邪恶的「常数」来企图毁灭 H 国。「卡」给 H 国的人洗脑说,splay 如果写成单旋的,将会更快。「卡」称「单旋 splay」为「spaly」。虽说他说的很没道理,但还是有 H 国的人相信了,小 H 就是其中之一,spaly 马上成为他的信仰。 而 H 国的国王,自然不允许这样的风气蔓延,国王构造了一组数据,数据由 (m) 个操作构成,他知道这样的数据肯定打垮 spaly,但是国王还有很多很多其他的事情要做,所以统计每个操作所需要的实际代价的任务就交给你啦。

    数据中的操作分为五种:

    1. 插入操作:向当前非空 spaly 中插入一个关键码为 (mathrm{key}) 的新孤立节点。插入方法为,先让 (mathrm{key}) 和根比较,如果 (mathrm{key}) 比根小,则往左子树走,否则往右子树走,如此反复,直到某个时刻,(mathrm{key}) 比当前子树根 (x) 小,而 (x) 的左子树为空,那就让 (mathrm{key}) 成为 (x) 的左孩子;
      或者 (mathrm{key}) 比当前子树根 (x) 大,而 (x) 的右子树为空,那就让 (mathrm{key}) 成为 (x) 的右孩子。该操作的代价为:插入后,(mathrm{key}) 的深度。特别地,若树为空,则直接让新节点成为一个单个节点的树。(各节点关键码互不相等。对于「深度」的解释见末尾对 spaly 的描述)。
    2. 单旋最小值:将 spaly 中关键码最小的元素 (mathrm{xmin}) 单旋到根。操作代价为:单旋前 (mathrm{xmin}) 的深度。(对于单旋操作的解释见末尾对 spaly 的描述)。
    3. 单旋最大值:将 spaly 中关键码最大的元素 (mathrm{xmax}) 单旋到根。操作代价为:单旋前 (mathrm{xmax}) 的深度。
    4. 单旋删除最小值:先执行 2 号操作,然后把根删除。由于 2 号操作之后,根没有左子树,所以直接切断根和右子树的联系即可(具体见样例解释)。 操作代价同 2 号操
      作。
    5. 单旋删除最大值:先执行 3 号操作,然后把根删除。 操作代价同 3 号操作。

    对于不是 H 国的人,你可能需要了解一些 spaly 的知识,才能完成国王的任务:

    • spaly 是一棵二叉树,满足对于任意一个节点 (x),它如果有左孩子 (mathrm{lx}),那么 (mathrm{lx}) 的关键码小于 (x) 的关键码。如果有右孩子 (mathrm{rx}),那么 (mathrm{rx}) 的关键码大于 (x) 的关键码。

    • 一个节点在 spaly 的深度定义为:从根节点到该节点的路径上一共有多少个节点(包括自己)。

    • 单旋操作是对于一棵树上的节点 (x) 来说的。一开始,设 (f)(x) 在树上的父亲。如果 (x)(f) 的左孩子,那么执行 (mathrm{zig}(x)) 操作(如上图中,左边的树经过 (mathrm{zig}(x)) 变为了右边的树),否则执行 (mathrm{zag}(x)) 操作(在上图中,将右边的树经过 (mathrm{zag}(f)) 就变成了左边的树)。每当执
      行一次 (mathrm{zig}(x)) 或者 (mathrm{zag}(x))(x) 的深度减小 (1),如此反复,直到 (x) 为根。总之,单旋 (x) 就是通过反复执行 (mathrm{zig})(mathrm{zag})(x) 变为根。

      样例输入

      5
      1 2
      1 1
      1 3
      4
      5
      

      样例输出

      1
      2
      2
      2
      2
      

    (1≤m≤10^5,1≤key≤10^9)

    做这种看起来很怪很不可做的题的关键是要发现特殊性质。

    因为这道题只对最大/最小值进行单旋操作,我们就会发现每次操作只会(zig)或者只会(zag)

    以最小值(x)为例,只会进行(zig)操作。操作完了过后,原来(x)的右儿子深度不变,(x)的深度变为(1),其他部分(+1)。并且(x)的右儿子的排名一定是连续的。所以我们就可以使用线段树了。

    插入的时候我们找到前驱和后继,深度较深的那个就是父节点。

    代码:

    #include<bits/stdc++.h>
    #define ll long long
    #define N 100005
    
    using namespace std;
    inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
    
    int m;
    int key[N],tot;
    int ch[N][2],fa[N];
    bool isleaf(int v) {return !ch[v][0]&&!ch[v][1];}
    set<int>::iterator it;
    set<int>pos;
    int rt;
    map<int,int>id;
    
    struct segment_tree {
    	int rt,ls[N*100],rs[N*100],tag[N*100];
    	int lx=0,rx=1e9;
    	int cnt;
    	void ADD(int &v,int old,int lx,int rx,int l,int r,int f) {
    		if(lx>r||rx<l) return ;
    		v=++cnt;
    		ls[v]=ls[old],rs[v]=rs[old];
    		tag[v]=tag[old];
    		if(l<=lx&&rx<=r) {tag[v]+=f;return ;}
    		int mid=lx+rx>>1;
    		ADD(ls[v],ls[old],lx,mid,l,r,f);
    		ADD(rs[v],rs[old],mid+1,rx,l,r,f);
    	}
    	void ADD(int l,int r,int f) {ADD(rt,rt,lx,rx,l,r,f);}
    	int query(int v,int lx,int rx,int p) {
    		if(!v) return 0;
    		if(lx==rx) return tag[v];
    		int mid=lx+rx>>1;
    		if(p<=mid) return query(ls[v],lx,mid,p)+tag[v];
    		else return query(rs[v],mid+1,rx,p)+tag[v];
    	}
    	int query(int v) {return query(rt,lx,rx,v);}
    }T;
    
    void Splay_mn() {
    	int x=id[*pos.begin()];
    	int dep=T.query(key[x]);
    	if(fa[x]) {
    		T.ADD(0,1e9,1);
    		if(key[x]<key[fa[x]]) T.ADD(key[x]+1,key[fa[x]]-1,-1);
    		T.ADD(key[x],key[x],1-T.query(key[x]));
    		fa[ch[x][1]]=fa[x];
    		ch[fa[x]][0]=ch[x][1];
    		ch[x][1]=rt;
    		fa[rt]=x,fa[x]=0;
    		rt=x;
    	}
    	cout<<dep<<"
    ";
    }
    
    void Splay_mx() {
    	int x=id[*(--pos.end())];
    	int dep=T.query(key[x]);
    	if(fa[x]) {
    		T.ADD(0,1e9,1);
    		if(key[x]>key[fa[x]]) T.ADD(key[fa[x]]+1,key[x]-1,-1);
    		T.ADD(key[x],key[x],1-T.query(key[x]));
    		fa[ch[x][0]]=fa[x];
    		ch[fa[x]][1]=ch[x][0];
    		ch[x][0]=rt;
    		fa[rt]=x,fa[x]=0;
    		rt=x;
    	}
    	cout<<dep<<"
    ";
    }
    
    int main() {
    	id[0]=0;
    	m=Get();
    	int op;
    	while(m--) {
    		op=Get();
    		if(op==1) {
    			key[++tot]=Get();
    			id[key[tot]]=tot;
    			int dep=0;
    			if(!pos.size()) {
    				pos.insert(key[tot]);
    				rt=tot;
    			} else {
    				int x=0,y=0;
    				it=pos.lower_bound(key[tot]);
    				if(it!=pos.end()) x=*it;
    				if(it!=pos.begin()) y=*(--it);
    				if(!x||!y) {
    					x=id[x+y];
    				} else {
    					x=id[x],y=id[y];
    					if(T.query(key[x])<T.query(key[y])) x=y;
    				}
    				dep=T.query(key[x]);
    				fa[tot]=x;
    				if(key[tot]>key[x]) ch[x][1]=tot;
    				else ch[x][0]=tot;
    				T.ADD(key[tot],key[tot],1);
    			}
    			pos.insert(key[tot]);
    			T.ADD(key[tot],key[tot],dep+1-T.query(key[tot]));
    			cout<<dep+1<<"
    ";
    		} else if(op==2) {
    			Splay_mn();
    		} else if(op==3) {
    			Splay_mx();
    		} else if(op==4) {
    			Splay_mn();
    			pos.erase(key[rt]);
    			rt=ch[rt][1];
    			fa[rt]=0;
    			T.ADD(0,1e9,-1);
    		} else {
    			Splay_mx();
    			pos.erase(key[rt]);
    			rt=ch[rt][0];
    			fa[rt]=0;
    			T.ADD(0,1e9,-1);
    		}
    	}
    	return 0;
    }
    
    
  • 相关阅读:
    点聚-weboffice 6.0 (二)
    点聚-weboffice 6.0 (一)
    Hibernate连接池设置
    ajax工作原理(转)
    LigerUI java SSH小例子
    file标签样式修改
    好久不来了,回来园子看看
    resharper 8.2
    无聊的要死
    无聊
  • 原文地址:https://www.cnblogs.com/hchhch233/p/10524298.html
Copyright © 2011-2022 走看看