zoukankan      html  css  js  c++  java
  • luogu P4515 [COCI2009-2010#6] XOR

    luogu P4515 [COCI2009-2010#6] XOR

    描述

    坐标系下有若干个等腰直角三角形,且每个等腰直角三角形的直角顶点都在左下方,两腰与坐标轴平行。被奇数个三角形覆盖的面

    积部分为灰色,被偶数个三角形覆盖的面积部分为白色,如下图所示。

      

    已知 NN个等腰直角三角形的顶点坐标及腰长,求灰色部分面积。

    输入输出格式

    输入格式:

    输入第一行包含一个整数 NN,表示等腰直角三角形数量。

    接下来 NN行,每行三个整数 X, Y, RX,Y,R,分别表示等腰直角三角形的顶点坐标 (X, Y)(X,Y)与腰长 RR。

    输入输出样例

    输入样例#1: 复制

    3
    1 1 2
    7 1 6
    5 3 4

    输出样例#1: 

    24.0

    这是自己做出的第一道容斥题(除了一些SB容斥),虽然这道题也不算太难,而且我做了一个晚上。总之就是自己在容斥上还是太菜了。

    还是来说题吧。首先要会求多个三角形的交。显然这道题中两个等腰直角的交还是一个等腰直角三角形。我的做法是分类讨论,不如洛谷上题解那么简洁,于是就不说了。

    重点是算出容斥系数。我们设i个三角形的交的容斥系数为f[i]。显然f[1]=1。对于i>1,的情况,我们先设初值,显然如果i为奇数,那么初值为1,否则为0。然后我们要容斥去重。f[i]-=sum _{1<=j<i}C_{i}^{j}*f[j]。计算j个三角形的交的时候,i个三角形的交会被计算C_{i}^{j}次。

    然后通过观察证明可以知道f[i]=(-1)^{i+1}cdot 2^{i-1}

    代码:

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    #include<cmath>
    #include<queue>
    #include<set>
    #include<map>
    #include<vector>
    #include<ctime>
    #include<iomanip>
    #define ll long long
    #define N 11
    
    using namespace std;
    inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
    
    int n;
    ll ans;
    ll f[N];
    ll c[N][N];
    struct tri {ll x,y,r;}s[N],tem,g;
    void work(tri a,tri b) {
    	if(a.y>b.y) swap(a,b);
    	if(a.x<=b.x) {
    		int r=min(b.r,a.r-(b.x+b.y-a.x-a.y));
    		if(r<0) return g.r=-1,void();
    		g=b;
    		g.r=r;
    	} else {
    		int r=min(a.y+a.r-b.y,b.x+b.r-a.x);
    		if(r<0) return g.r=-1,void();
    		g.x=a.x,g.y=b.y;
    		g.r=r;
    	}
    }
    void dfs(int v,ll x,ll y,ll r,int tot) {
    	if(r<=0&&tot) return ;
    	if(v>n) {
    		if(!tot) return ;
    		ans+=r*r*f[tot];
    		return ;
    	}
    	dfs(v+1,x,y,r,tot);
    	if(!tot) {
    		dfs(v+1,s[v].x,s[v].y,s[v].r,tot+1);
    	} else {
    		tem.x=x,tem.y=y,tem.r=r;
    		work(s[v],tem);
    		dfs(v+1,g.x,g.y,g.r,tot+1);
    	}
    }
    int main() {
    	n=Get();
    	c[0][0]=1;
    	for(int i=1;i<=n;i++) {
    		for(int j=0;j<=i;j++) {
    			c[i][j]=(!j||i==j)?1:c[i-1][j-1]+c[i-1][j];
    		}
    	}
    	for(int i=1;i<=n;i++) {
    		f[i]=(i&1)?1:0;
    		for(int j=1;j<i;j++) {
    			f[i]-=f[j]*c[i][j];
    		}
    	}
    	//f[i]=(-1)^(i+1)*2^(i-1)
    	for(int i=1;i<=n;i++) {
    		s[i].x=Get(),s[i].y=Get(),s[i].r=Get();
    	}
    	dfs(1,0,0,0,0);
    	cout<<fixed<<setprecision(1)<<1.0*ans/2;
    	return 0;
    }
    
  • 相关阅读:
    递归算法
    C#委托
    final 、finally
    JSP中的日期问题
    为GirdView添加CSS样式
    PC连Moto V180上网
    CSS条状图表:垂直型
    树型列表的实现
    关闭窗口无提示
    用PhotoShop做漂亮的相框,哈哈
  • 原文地址:https://www.cnblogs.com/hchhch233/p/9735817.html
Copyright © 2011-2022 走看看