zoukankan      html  css  js  c++  java
  • Storm入门(七)可靠性机制代码示例

    一、关联代码

    使用maven,代码如下。

    pom.xml  参考 http://www.cnblogs.com/hd3013779515/p/6970551.html

    MessageTopology.java

    package cn.ljh.storm.reliability;
    
    import org.apache.storm.Config;
    import org.apache.storm.LocalCluster;
    import org.apache.storm.topology.TopologyBuilder;
    import org.apache.storm.utils.Utils;
    
    public class MessageTopology {
        public static void main(String[] args) throws Exception {
            TopologyBuilder builder = new TopologyBuilder();
    
            builder.setSpout("MessageSpout", new MessageSpout(), 1);
            builder.setBolt("SpilterBolt", new SpliterBolt(), 5).shuffleGrouping("MessageSpout");
            builder.setBolt("WriterBolt", new WriterBolt(), 1).shuffleGrouping("SpilterBolt");
    
            Config conf = new Config();
            conf.setDebug(false);
    
    
            LocalCluster cluster = new LocalCluster();
            cluster.submitTopology("messagetest", conf, builder.createTopology());
            Utils.sleep(20000);
            cluster.killTopology("messagetest");
            cluster.shutdown();
        }
    }

    MessageSpou.java

    package cn.ljh.storm.reliability;
    
    import org.apache.storm.topology.OutputFieldsDeclarer;
    
    import java.util.Map;
    import org.apache.storm.spout.SpoutOutputCollector;
    import org.apache.storm.task.TopologyContext;
    import org.apache.storm.topology.base.BaseRichSpout;
    import org.apache.storm.tuple.Fields;
    import org.apache.storm.tuple.Values;
    
    import org.slf4j.Logger;
    import org.slf4j.LoggerFactory;
    
    public class MessageSpout extends BaseRichSpout {
       public static Logger LOG = LoggerFactory.getLogger(MessageSpout.class);
       private SpoutOutputCollector _collector;
       
       private int index = 0;
       private String[] subjects = new String[]{
               "Java,Python",
               "Storm,Kafka",
               "Spring,Solr",
               "Zookeeper,FastDFS",
               "Dubbox,Redis"
       };
           
       public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
           _collector = collector;
       }
       
       public void nextTuple() {
           
           if(index < subjects.length){
               String sub = subjects[index];
               //使用messageid参数,使可靠性机制生效
               _collector.emit(new Values(sub), index);
               index++;
           }
       }
       
       public void declareOutputFields(OutputFieldsDeclarer declarer) {
           declarer.declare(new Fields("subjects"));
       }
       
       @Override
       public void ack(Object msgId) {
           LOG.info("【消息发送成功!】(msgId = " + msgId + ")");
       }
    
       @Override
       public void fail(Object msgId) {
           LOG.info("【消息发送失败!】(msgId = " + msgId + ")");
           LOG.info("【重发进行中。。。】");
           _collector.emit(new Values(subjects[(Integer)msgId]), msgId);
           LOG.info("【重发成功!】");
       }
       
    }

    SpliterBolt.java

    package cn.ljh.storm.reliability;
    
    import java.util.Map;
    
    import org.apache.storm.task.OutputCollector;
    import org.apache.storm.task.TopologyContext;
    import org.apache.storm.topology.OutputFieldsDeclarer;
    import org.apache.storm.topology.base.BaseRichBolt;
    import org.apache.storm.tuple.Fields;
    import org.apache.storm.tuple.Tuple;
    import org.apache.storm.tuple.Values;
    
    public class SpliterBolt extends BaseRichBolt {
        OutputCollector _collector;
        private boolean flag = false;
    
        public void prepare(Map conf, TopologyContext context, OutputCollector collector) {
          _collector = collector;
        }
    
        public void execute(Tuple tuple) {
            
            try{
                String subjects = tuple.getStringByField("subjects");
                
    //            if(!flag && subjects.equals("Spring,Solr")){
    //                flag = true;
    //                int a = 1/0;
    //            }
                
                String[] words = subjects.split(",");
                for(String word : words){
                    //注意:要携带tuple对象,用于处理异常时重发策略。
                    _collector.emit(tuple, new Values(word));
                }
                
                //对tuple进行ack
                _collector.ack(tuple);
            }catch(Exception ex){
                ex.printStackTrace();
                //对tuple进行fail,使重发。
                _collector.fail(tuple);
            }
        }
    
        public void declareOutputFields(OutputFieldsDeclarer declarer) {
          declarer.declare(new Fields("word"));
        }
    
      }

    WriterBolt.java

    package cn.ljh.storm.reliability;
    
    import java.io.FileWriter;
    import java.io.IOException;
    import java.util.Map;
    
    import org.apache.storm.task.OutputCollector;
    import org.apache.storm.task.TopologyContext;
    import org.apache.storm.topology.OutputFieldsDeclarer;
    import org.apache.storm.topology.base.BaseRichBolt;
    import org.apache.storm.tuple.Tuple;
    import org.slf4j.Logger;
    import org.slf4j.LoggerFactory;
    
    public class WriterBolt extends BaseRichBolt {
            private static Logger LOG = LoggerFactory.getLogger(WriterBolt.class);
            OutputCollector _collector;
            
            private FileWriter fileWriter;
            private boolean flag = false;
    
            public void prepare(Map conf, TopologyContext context, OutputCollector collector) {
              _collector = collector;
    
                if(fileWriter == null){
                    try {
                        fileWriter = new FileWriter("D:\test\"+"words.txt");
                    } catch (IOException e) {
                        e.printStackTrace();
                    }
                }
              
            }
    
            public void execute(Tuple tuple) {
                try {
                      String word = tuple.getStringByField("word");
                    
    //                if(!flag && word.equals("Kafka")){
    //                    flag = true;
    //                    int a = 1/0;
    //                }
                    fileWriter.write(word + "
    ");
                    fileWriter.flush();
                } catch (Exception e) {
                    e.printStackTrace();
                    //对tuple进行fail,使重发。
                    _collector.fail(tuple);
                }
                //对tuple进行ack
                _collector.ack(tuple);
            }
    
            public void declareOutputFields(OutputFieldsDeclarer declarer) {
            }
    }

    二、执行效果

    1、代码要点说明

    MessageSpout.java

    (1)发射tuple时要设置messageId来使可靠性机制生效

    _collector.emit(new Values(sub), index);

    (2)重写ack和fail方法

    @Override
       public void ack(Object msgId) {
           LOG.info("【消息发送成功!】(msgId = " + msgId + ")");
       }
    
       @Override
       public void fail(Object msgId) {
           LOG.info("【消息发送失败!】(msgId = " + msgId + ")");
           LOG.info("【重发进行中。。。】");
           _collector.emit(new Values(subjects[(Integer)msgId]), msgId);
           LOG.info("【重发成功!】");
       }

    SpliterBolt.java

    (1)发射新tuple时设置输入tuple参数,以使新tuple和输入tuple为一个整体

    _collector.emit(tuple, new Values(word));

    (2)完成处理后进行ack,失败时进行fail

    _collector.ack(tuple);
    
    _collector.fail(tuple);

    WriterBolt.java

    (1)完成处理后进行ack,失败时进行fail

    _collector.ack(tuple);
    
    _collector.fail(tuple);

    2、正常处理结果

    image

    image

    3、放开SpliterBolt 的错误代码

    结果显示能够正确的重发。

    image

    image

    4、放开SpliterBolt 的错误代码

    能够正确进行重发,但是文件中storm字符串出现了两次。

    image

    image

    5、总结

    通过以上测试,如果在第一个bolt处理时出现异常,可以让整个数据进行重发,如果第二个bolt处理时出现异常,也可以让整个数据进行重发,但是同时出现了重复处理的事务性问题,需要进行特殊的处理。

    (1)如果数据入库的话,可以把messageId也进行入库保存。此messageId可以用来判断是否重复处理。

    (2)事务性tuple尽量不要拆分。

    (3)使用storm的Trident框架。

  • 相关阅读:
    Java内存区域
    高并发
    集合框架
    面向对象基础概念
    java synchronized详解
    java使用DOM操作XML
    二、认识Xcode(第一个工程:Hello world)
    菜鸟手下的iOS开发笔记(swift)
    一、iOS开发环境搭建
    一个基于JRTPLIB的轻量级RTSP客户端(myRTSPClient)——实现篇:(十)使用JRTPLIB传输RTP数据
  • 原文地址:https://www.cnblogs.com/hd3013779515/p/6972525.html
Copyright © 2011-2022 走看看