题目大意:已知c[i]...c[n]及f[i]...f[n],现要选出一些i,使得当sum{c[i]}和sum{f[i]}均非负时,sum(c[i]+f[i])的最大值。
以sum(c[i])(c[i]>=0)作为背包容量totV,i当作物体,c[i]当作物体体积,f[i]当作物体重量,01背包后,求max{j+DP[j]} (非负)即可。
注意:
- 这里物体体积存在负数,所以循环j时起始条件不能为j=0!而应当在for下面加if,判断子问题在minJ~maxJ范围之内。
- 初值不是DP[最左端点]=0,而是DP[0点所在位置]=0。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAX_V = 200010, MAX_OBJ = 110;
#define M(x) x+offset//move
int DP(int minJ, int maxJ, int totObj, int *_v, int *_w)
{
static int DP[MAX_V];
int offset = max(-minJ, 0);
memset(DP, 0xcf, sizeof(DP));
DP[M(0)] = 0;
for (int i = 1; i <= totObj; i++)
{
if (_v[i] <= 0)
{
for (int j = minJ; j <= maxJ; j++)
if (j >= minJ + _v[i] && j <= maxJ + _v[i])
DP[M(j)] = max(DP[M(j)], DP[M(j - _v[i])] + _w[i]);
}
else
{
for (int j = maxJ; j >= minJ; j--)
if (j >= minJ + _v[i] && j <= maxJ + _v[i])
DP[M(j)] = max(DP[M(j)], DP[M(j - _v[i])] + _w[i]);
}
}
int ans = 0;
for (int j = 0; j <= maxJ; j++)
if(DP[M(j)] >=0)
ans = max(ans, j+DP[M(j)]);
return ans;
}
int main()
{
#ifdef _DEBUG
freopen("c:\noi\source\input.txt", "r", stdin);
#endif
static int _s[MAX_OBJ], _f[MAX_OBJ];
int n, minS = 0, maxS = 0, cnt = 0, s, f, tempAns = 0;
scanf("%d", &n);
for (int i = 1; i <= n; i++)
{
scanf("%d%d", &s, &f);
if (s >= 0 && f >= 0)
{
tempAns += s + f;
continue;
}
else if (s <= 0 && f <= 0)
continue;
else
{
cnt++;
_s[cnt] = s;
_f[cnt] = f;
_s[cnt] > 0 ? maxS += _s[cnt] : minS += _s[cnt];
}
}
printf("%d
", tempAns + DP(minS, maxS, cnt, _s, _f));
return 0;
}