题目大意
有一棵有根树,每个结点有一个收益,每条边有一个花费。如果要选择一个叶子结点,则根节点到该叶子结点的路径上的所有结点都必须被选择。求当总收益大于等于总花费的情况下,最多能选择多少个叶子结点。
思路
#include <cstdio> #include <cstring> #include <algorithm> #include <cassert> using namespace std; const int MAX_NODE = 3010, MAX_EDGE = MAX_NODE, MINF = 0xcfcfcfcf; int TotNode, TotLeaf; struct Node; struct Edge; struct Node { Edge *Head; int DP[MAX_NODE]; int Val; int LeafCnt; }_nodes[MAX_NODE]; struct Edge { Node *To; Edge *Next; int Cost; }_edges[MAX_EDGE]; int _eCount; void AddEdge(Node *from, Node *to, int w) { Edge *e = _edges + ++_eCount; e->To = to; e->Cost = w; e->Next = from->Head; from->Head = e; } void Dfs(Node *cur) { memset(cur->DP, MINF, sizeof(cur->DP)); cur->DP[0] = 0; if (cur - _nodes > TotNode - TotLeaf) { assert(!cur->Head); cur->DP[1] = cur->Val; cur->LeafCnt = 1; return; } for (Edge *e = cur->Head; e; e = e->Next) { Dfs(e->To); cur->LeafCnt += e->To->LeafCnt; } for (Edge *e = cur->Head; e; e = e->Next) for (int j = cur->LeafCnt; j >= 1; j--) for (int k = 1; k <= min(j, e->To->LeafCnt); k++) cur->DP[j] = max(cur->DP[j], cur->DP[j - k] + e->To->DP[k] - e->Cost); } int main() { scanf("%d%d", &TotNode, &TotLeaf); for (int i = 1; i <= TotNode - TotLeaf; i++) { int totOut, to, w; scanf("%d", &totOut); for (int j = 1; j <= totOut; j++) { scanf("%d%d", &to, &w); AddEdge(_nodes + i, _nodes + to, w); } } for (int i = TotNode - TotLeaf + 1; i <= TotNode; i++) scanf("%d", &_nodes[i].Val); Dfs(_nodes + 1); for (int j = TotLeaf; j >= 0; j--) { if (_nodes[1].DP[j] >= 0) { printf("%d ", j); return 0; } } return 0; }