题目大意
有一棵有根树,每个结点有一个收益,每条边有一个花费。如果要选择一个叶子结点,则根节点到该叶子结点的路径上的所有结点都必须被选择。求当总收益大于等于总花费的情况下,最多能选择多少个叶子结点。
思路

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cassert>
using namespace std;
const int MAX_NODE = 3010, MAX_EDGE = MAX_NODE, MINF = 0xcfcfcfcf;
int TotNode, TotLeaf;
struct Node;
struct Edge;
struct Node
{
Edge *Head;
int DP[MAX_NODE];
int Val;
int LeafCnt;
}_nodes[MAX_NODE];
struct Edge
{
Node *To;
Edge *Next;
int Cost;
}_edges[MAX_EDGE];
int _eCount;
void AddEdge(Node *from, Node *to, int w)
{
Edge *e = _edges + ++_eCount;
e->To = to;
e->Cost = w;
e->Next = from->Head;
from->Head = e;
}
void Dfs(Node *cur)
{
memset(cur->DP, MINF, sizeof(cur->DP));
cur->DP[0] = 0;
if (cur - _nodes > TotNode - TotLeaf)
{
assert(!cur->Head);
cur->DP[1] = cur->Val;
cur->LeafCnt = 1;
return;
}
for (Edge *e = cur->Head; e; e = e->Next)
{
Dfs(e->To);
cur->LeafCnt += e->To->LeafCnt;
}
for (Edge *e = cur->Head; e; e = e->Next)
for (int j = cur->LeafCnt; j >= 1; j--)
for (int k = 1; k <= min(j, e->To->LeafCnt); k++)
cur->DP[j] = max(cur->DP[j], cur->DP[j - k] + e->To->DP[k] - e->Cost);
}
int main()
{
scanf("%d%d", &TotNode, &TotLeaf);
for (int i = 1; i <= TotNode - TotLeaf; i++)
{
int totOut, to, w;
scanf("%d", &totOut);
for (int j = 1; j <= totOut; j++)
{
scanf("%d%d", &to, &w);
AddEdge(_nodes + i, _nodes + to, w);
}
}
for (int i = TotNode - TotLeaf + 1; i <= TotNode; i++)
scanf("%d", &_nodes[i].Val);
Dfs(_nodes + 1);
for (int j = TotLeaf; j >= 0; j--)
{
if (_nodes[1].DP[j] >= 0)
{
printf("%d
", j);
return 0;
}
}
return 0;
}