要你求两个非常大的数字的GCD。
不要想复杂,用高精度整更相减损术即可。
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; struct BigInt { static const int BASE = 10000, CARRY = 4, MAX_N = 10000; int A[MAX_N], Len; void Clear() { memset(A, 0, sizeof(A)); Len = 0; } void Read(char *s) { int len = strlen(s); Clear(); int cur = 0, pos = 0, pow = 1; for (int i = len - 1; i >= 0; i--) { cur += (s[i] - '0') * pow; pow *= 10; if (++pos == CARRY) { A[Len++] = cur; cur = pos = 0; pow = 1; } } if (!pos) Len--; else A[Len] = cur; } void Print() { printf("%d", A[Len]); for (int i = Len - 1; i >= 0; i--) printf("%0*d", CARRY, A[i]); printf(" "); } void operator -= (const BigInt& a) { for (int i = 0; i <= Len; i++) { A[i] -= a.A[i]; if (A[i] < 0) { A[i + 1]--; A[i] += BASE; } } while (A[Len] == 0 && Len > 0) Len--; } bool operator < (const BigInt& a) const { if (Len != a.Len) return Len < a.Len; for (int i = Len; i >= 0; i--) if (A[i] != a.A[i]) return A[i] < a.A[i]; return false; } bool operator != (const BigInt& a) const { if (Len != a.Len) return true; for (int i = Len; i >= 0; i--) if (A[i] != a.A[i]) return true; return false; } }; int main() { BigInt *a = new BigInt, *b = new BigInt; static char s[BigInt::BASE * BigInt::CARRY]; scanf("%s", s); a->Read(s); scanf("%s", s); b->Read(s); while (*a != *b) { if (*a < *b) swap(a, b); *a -= *b; } a->Print(); return 0; }