zoukankan      html  css  js  c++  java
  • Hadoop部署 Ubuntu14.04

    Hadoop部署 Ubuntu14.04

    Hadoop有3种部署方式。

    单机模式,伪分布模式,完全分布式(集群,3个节点)。

    一、单机模式

    1 基础环境

    1.1创建hadoop用户组

    sudo addgroup hadoop

    1.2创建hadoop用户

     sudo adduser -ingroup hadoop hadoop

    1.3为hadoop用户添加权限

    输入:sudo gedit /etc/sudoers

    回车,打开sudoers文件

    给hadoop用户赋予和root用户同样的权限

    1.4用新增加的hadoop用户登录Ubuntu系统

    su Hadoop

    1.5安装ssh

    sudo apt-get install openssh-server

    1.6设置免密码登录,生成私钥和公钥

    ssh-keygen -t rsa -P ""

    此时会在/home/hadoop/.ssh下生成两个文件:id_rsa和id_rsa.pub,前者为私钥,后者为公钥。

    下面我们将公钥追加到authorized_keys中,它用户保存所有允许以当前用户身份登录到ssh客户端用户的公钥内容。

    cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys


    1.7验证登录ssh

     

    ssh localhost

     

     

    2 安装部署

    2.1 安装Java环境

    先去 Oracle下载Linux下的JDK压缩包,我下载的是jdk-7u79-linux64.gz文件,下好后直接解压

    tar –zxvf jdk-7u79-linux64.gz

     

    Step1:

    # 将解压好的jdk1.7.0_79文件夹用最高权限复制到/usr/lib/jvm目录里

    sudo cp -r ~/jdk1.7.0_79/ /usr/lib/jvm/

     

    Step2:

    # 配置环境变量

    sudo gedit ~/.profile

    在末尾加上:

    export JAVA_HOME=/usr/lib/jvm/jdk1.7.0_79

     

    然后保存关闭,使用source更新下

    $ source ~/.profile

     

    使用env命令察看JAVA_HOME的值

    $ env

    如果JAVA_HOME=/usr/lib/jvm/jdk1.7.0_79,说明配置成功。

     

    Step3:

    # 将系统默认的jdk修改过来

    $ sudo update-alternatives --install /usr/bin/java java /usr/lib/jvm/jdk1.7.0_79/bin/java 300

     

    输入sun jdk前的数字就好了

    $ sudo update-alternatives --install /usr/bin/javac javac /usr/lib/jvm/jdk1.7.0_79/bin/javac 300

     

    $ sudo update-alternatives --config java

    $ sudo update-alternatives --config javac

     

    Step4:

    然后再输入java -version,看到如下信息,就说明改成sun的jdk了:

    java version "1.7.0_04"

    Java(TM) SE Runtime Environment (build 1.7.0_04-b20)

    Java HotSpot(TM) Server VM (build 23.0-b21, mixed mode)

     

     

     

     

    2.2 安装hadoop2.6.0

     

    官网下载:

    http://mirror.bit.edu.cn/apache/hadoop/common/hadoop-2.6.0/

     

    安装:

    解压

     

    sudo tar xzf hadoop-2.6.0.tar.gz

    假如我们要把hadoop安装到/usr/local下

    拷贝到/usr/local/下,文件夹为hadoop

    sudo mv hadoop-2.6.0 /usr/local/hadoop

     

    赋予用户对该文件夹的读写权限

    sudo chmod 774 /usr/local/hadoop

     

    配置:

     

    1)配置~/.bashrc

     

    配置该文件前需要知道Java的安装路径,用来设置JAVA_HOME环境变量,可以使用下面命令行查看安装路径

    update-alternatives - -config java

    执行结果如下:

     

    完整的路径为

    /usr/lib/jvm/jdk1.7.0_79/jre/bin/java

    我们只取前面的部分 /usr/lib/jvm/jdk1.7.0_79

     

    配置.bashrc文件

    sudo gedit ~/.bashrc

     

    该命令会打开该文件的编辑窗口,在文件末尾追加下面内容,然后保存,关闭编辑窗口。

    #HADOOP VARIABLES START

    export JAVA_HOME=/usr/lib/jvm/jdk1.7.0_79

    export HADOOP_INSTALL=/usr/local/hadoop

    export PATH=$PATH:$HADOOP_INSTALL/bin

    export PATH=$PATH:$HADOOP_INSTALL/sbin

    export HADOOP_MAPRED_HOME=$HADOOP_INSTALL

    export HADOOP_COMMON_HOME=$HADOOP_INSTALL

    export HADOOP_HDFS_HOME=$HADOOP_INSTALL

    export YARN_HOME=$HADOOP_INSTALL

    export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_INSTALL/lib/native

    export HADOOP_OPTS="-Djava.library.path=$HADOOP_INSTALL/lib"

    #HADOOP VARIABLES END

     

    最终结果如下图:

     

     

    执行下面命,使添加的环境变量生效:

     

    source ~/.bashrc

     

    2)编辑/usr/local/hadoop/etc/hadoop/hadoop-env.sh

     

    执行下面命令,打开该文件的编辑窗口

    sudo gedit /usr/local/hadoop/etc/hadoop/hadoop-env.sh

    找到JAVA_HOME变量,修改此变量如下

    export JAVA_HOME=/usr/lib/jvm/jdk1.7.0_79

     

    修改后的hadoop-env.sh文件如下所示:

     

    2.3 WordCount测试

     

    单机模式安装完成,下面通过执行hadoop自带实例WordCount验证是否安装成功。

     

    /usr/local/hadoop路径下创建input文件夹

    mkdir input

     

    拷贝README.txt到input

     

    cp README.txt input

     

    执行WordCount

     

    bin/hadoop jar share/hadoop/mapreduce/sources/hadoop-mapreduce-examples-2.6.0-sources.jar org.apache.hadoop.examples.WordCount input output

     

     

    执行结果:

    root@hadoop1:/usr/local/hadoop# bin/hadoop jar share/hadoop/mapreduce/sources/hadoop-mapreduce-examples-2.6.0-sources.jar org.apache.hadoop.examples.WordCount input output

    /usr/local/hadoop/etc/hadoop/hadoop-env.sh: line 26: export: `jdk1.7.0_79': not a valid identifier

    15/04/22 17:46:20 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

    15/04/22 17:46:20 INFO Configuration.deprecation: session.id is deprecated. Instead, use dfs.metrics.session-id

    15/04/22 17:46:20 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=

    15/04/22 17:46:20 INFO input.FileInputFormat: Total input paths to process : 1

    15/04/22 17:46:20 INFO mapreduce.JobSubmitter: number of splits:1

    15/04/22 17:46:21 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_local513316183_0001

    15/04/22 17:46:21 INFO mapreduce.Job: The url to track the job: http://localhost:8080/

    15/04/22 17:46:21 INFO mapreduce.Job: Running job: job_local513316183_0001

    15/04/22 17:46:21 INFO mapred.LocalJobRunner: OutputCommitter set in config null

    15/04/22 17:46:21 INFO mapred.LocalJobRunner: OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter

    15/04/22 17:46:21 INFO mapred.LocalJobRunner: Waiting for map tasks

    15/04/22 17:46:21 INFO mapred.LocalJobRunner: Starting task: attempt_local513316183_0001_m_000000_0

    15/04/22 17:46:21 INFO mapred.Task: Using ResourceCalculatorProcessTree : [ ]

    15/04/22 17:46:21 INFO mapred.MapTask: Processing split: file:/usr/local/hadoop/input/README.txt:0+1366

    15/04/22 17:46:21 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584)

    15/04/22 17:46:21 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 100

    15/04/22 17:46:21 INFO mapred.MapTask: soft limit at 83886080

    15/04/22 17:46:21 INFO mapred.MapTask: bufstart = 0; bufvoid = 104857600

    15/04/22 17:46:21 INFO mapred.MapTask: kvstart = 26214396; length = 6553600

    15/04/22 17:46:21 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer

    15/04/22 17:46:21 INFO mapred.LocalJobRunner:

    15/04/22 17:46:21 INFO mapred.MapTask: Starting flush of map output

    15/04/22 17:46:21 INFO mapred.MapTask: Spilling map output

    15/04/22 17:46:21 INFO mapred.MapTask: bufstart = 0; bufend = 2055; bufvoid = 104857600

    15/04/22 17:46:21 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 26213684(104854736); length = 713/6553600

    15/04/22 17:46:21 INFO mapred.MapTask: Finished spill 0

    15/04/22 17:46:21 INFO mapred.Task: Task:attempt_local513316183_0001_m_000000_0 is done. And is in the process of committing

    15/04/22 17:46:21 INFO mapred.LocalJobRunner: map

    15/04/22 17:46:21 INFO mapred.Task: Task 'attempt_local513316183_0001_m_000000_0' done.

    15/04/22 17:46:21 INFO mapred.LocalJobRunner: Finishing task: attempt_local513316183_0001_m_000000_0

    15/04/22 17:46:21 INFO mapred.LocalJobRunner: map task executor complete.

    15/04/22 17:46:21 INFO mapred.LocalJobRunner: Waiting for reduce tasks

    15/04/22 17:46:21 INFO mapred.LocalJobRunner: Starting task: attempt_local513316183_0001_r_000000_0

    15/04/22 17:46:21 INFO mapred.Task: Using ResourceCalculatorProcessTree : [ ]

    15/04/22 17:46:21 INFO mapred.ReduceTask: Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@5535c2c7

    15/04/22 17:46:21 INFO reduce.MergeManagerImpl: MergerManager: memoryLimit=333971456, maxSingleShuffleLimit=83492864, mergeThreshold=220421168, ioSortFactor=10, memToMemMergeOutputsThreshold=

    1015/04/22 17:46:21 INFO reduce.EventFetcher: attempt_local513316183_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events

    15/04/22 17:46:22 INFO reduce.LocalFetcher: localfetcher#1 about to shuffle output of map attempt_local513316183_0001_m_000000_0 decomp: 1832 len: 1836 to MEMORY

    15/04/22 17:46:22 INFO reduce.InMemoryMapOutput: Read 1832 bytes from map-output for attempt_local513316183_0001_m_000000_0

    15/04/22 17:46:22 INFO reduce.MergeManagerImpl: closeInMemoryFile -> map-output of size: 1832, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->1832

    15/04/22 17:46:22 INFO reduce.EventFetcher: EventFetcher is interrupted.. Returning

    15/04/22 17:46:22 INFO mapred.LocalJobRunner: 1 / 1 copied.

    15/04/22 17:46:22 INFO reduce.MergeManagerImpl: finalMerge called with 1 in-memory map-outputs and 0 on-disk map-outputs

    15/04/22 17:46:22 INFO mapred.Merger: Merging 1 sorted segments

    15/04/22 17:46:22 INFO mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 1823 bytes

    15/04/22 17:46:22 INFO reduce.MergeManagerImpl: Merged 1 segments, 1832 bytes to disk to satisfy reduce memory limit

    15/04/22 17:46:22 INFO reduce.MergeManagerImpl: Merging 1 files, 1836 bytes from disk

    15/04/22 17:46:22 INFO reduce.MergeManagerImpl: Merging 0 segments, 0 bytes from memory into reduce

    15/04/22 17:46:22 INFO mapred.Merger: Merging 1 sorted segments

    15/04/22 17:46:22 INFO mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 1823 bytes

    15/04/22 17:46:22 INFO mapred.LocalJobRunner: 1 / 1 copied.

    15/04/22 17:46:22 INFO Configuration.deprecation: mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords

    15/04/22 17:46:22 INFO mapred.Task: Task:attempt_local513316183_0001_r_000000_0 is done. And is in the process of committing

    15/04/22 17:46:22 INFO mapred.LocalJobRunner: 1 / 1 copied.

    15/04/22 17:46:22 INFO mapred.Task: Task attempt_local513316183_0001_r_000000_0 is allowed to commit now

    15/04/22 17:46:22 INFO output.FileOutputCommitter: Saved output of task 'attempt_local513316183_0001_r_000000_0' to file:/usr/local/hadoop/output/_temporary/0/task_local513316183_0001_r_00000

    015/04/22 17:46:22 INFO mapred.LocalJobRunner: reduce > reduce

    15/04/22 17:46:22 INFO mapred.Task: Task 'attempt_local513316183_0001_r_000000_0' done.

    15/04/22 17:46:22 INFO mapred.LocalJobRunner: Finishing task: attempt_local513316183_0001_r_000000_0

    15/04/22 17:46:22 INFO mapred.LocalJobRunner: reduce task executor complete.

    15/04/22 17:46:22 INFO mapreduce.Job: Job job_local513316183_0001 running in uber mode : false

    15/04/22 17:46:22 INFO mapreduce.Job: map 100% reduce 100%

    15/04/22 17:46:22 INFO mapreduce.Job: Job job_local513316183_0001 completed successfully

    15/04/22 17:46:22 INFO mapreduce.Job: Counters: 33

        File System Counters

            FILE: Number of bytes read=547400

            FILE: Number of bytes written=1048794

            FILE: Number of read operations=0

            FILE: Number of large read operations=0

            FILE: Number of write operations=0

        Map-Reduce Framework

            Map input records=31

            Map output records=179

            Map output bytes=2055

            Map output materialized bytes=1836

            Input split bytes=104

            Combine input records=179

            Combine output records=131

            Reduce input groups=131

            Reduce shuffle bytes=1836

            Reduce input records=131

            Reduce output records=131

            Spilled Records=262

            Shuffled Maps =1

            Failed Shuffles=0

            Merged Map outputs=1

            GC time elapsed (ms)=60

            CPU time spent (ms)=0

            Physical memory (bytes) snapshot=0

            Virtual memory (bytes) snapshot=0

            Total committed heap usage (bytes)=404750336

        Shuffle Errors

            BAD_ID=0

            CONNECTION=0

            IO_ERROR=0

            WRONG_LENGTH=0

            WRONG_MAP=0

            WRONG_REDUCE=0

        File Input Format Counters

            Bytes Read=1366

        File Output Format Counters

            Bytes Written=1326

    执行 cat output/*,查看字符统计结果

     

    root@hadoop1:/usr/local/hadoop# cat output/*

    (BIS),    1

    (ECCN)    1

    (TSU)    1

    (see    1

    5D002.C.1,    1

    740.13)    1

    <http://www.wassenaar.org/>    1

    Administration    1

    Apache    1

    BEFORE    1

    BIS    1

    Bureau    1

    Commerce,    1

    Commodity    1

    Control    1

    Core    1

    Department    1

    ENC    1

    Exception    1

    Export    2

    For    1

    Foundation    1

    Government    1

    Hadoop    1

    Hadoop,    1

    Industry    1

    Jetty    1

    License    1

    Number    1

    Regulations,    1

    SSL    1

    Section    1

    Security    1

    See    1

    Software    2

    Technology    1

    The    4

    This    1

    U.S.    1

    Unrestricted    1

    about    1

    algorithms.    1

    and    6

    and/or    1

    another    1

    any    1

    as    1

    asymmetric    1

    at:    2

    both    1

    by    1

    check    1

    classified    1

    code    1

    code.    1

    concerning    1

    country    1

    country's    1

    country,    1

    cryptographic    3

    currently    1

    details    1

    distribution    2

    eligible    1

    encryption    3

    exception    1

    export    1

    following    1

    for    3

    form    1

    from    1

    functions    1

    has    1

    have    1

    http://hadoop.apache.org/core/    1

    http://wiki.apache.org/hadoop/    1

    if    1

    import,    2

    in    1

    included    1

    includes    2

    information    2

    information.    1

    is    1

    it    1

    latest    1

    laws,    1

    libraries    1

    makes    1

    manner    1

    may    1

    more    2

    mortbay.org.    1

    object    1

    of    5

    on    2

    or    2

    our    2

    performing    1

    permitted.    1

    please    2

    policies    1

    possession,    2

    project    1

    provides    1

    re-export    2

    regulations    1

    reside    1

    restrictions    1

    security    1

    see    1

    software    2

    software,    2

    software.    2

    software:    1

    source    1

    the    8

    this    3

    to    2

    under    1

    use,    2

    uses    1

    using    2

    visit    1

    website    1

    which    2

    wiki,    1

    with    1

    written    1

    you    1

    your    1

     

     

     

     

     

    二、伪分布模式(单节点集群)

    在单机模式的基础上进行伪分布模式的部署。

     

    1、配置core-site.xml

    /usr/local/hadoop/etc/hadoop/core-site.xml 包含了hadoop启动时的配置信息

    编辑器中打开此文件

    sudo vi /usr/local/hadoop/etc/hadoop/core-site.xml

    在该文件的<configuration></configuration>之间增加如下内容:

    <property>

    <name>fs.default.name</name>

    <value>hdfs://localhost:9000</value>

    </property>

    保存、关闭编辑窗口。

    最终修改后的文件内容如下:

    2、配置yarn-site.xml

    /usr/local/hadoop/etc/hadoop/yarn-site.xml包含了MapReduce启动时的配置信息

    编辑器中打开此文件

    sudo vi /usr/local/hadoop/etc/hadoop/yarn-site.xml

    在该文件的<configuration></configuration>之间增加如下内容:

    <property>

    <name>yarn.nodemanager.aux-services</name>

    <value>mapreduce_shuffle</value>

    </property>

    <property>

    <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>

    <value>org.apache.hadoop.mapred.ShuffleHandler</value>

    </property>

    保存、关闭编辑窗口

    最终修改后的文件内容如下

    3、创建和配置mapred-site.xml

     

    默认情况下,/usr/local/hadoop/etc/hadoop/文件夹下有mapred.xml.template文件,我们要复制该文件,并命名为mapred.xml,该文件用于指定MapReduce使用的框架

    复制并重命名

    cd /usr/local/hadoop/etc/hadoop/

    cp mapred-site.xml.template mapred-site.xml

    编辑器打开此新建文件

    sudo vi mapred-site.xml

    在该文件的<configuration></configuration>之间增加如下内容:

    <property>

    <name>mapreduce.framework.name</name>

    <value>yarn</value>

    </property>

    保存、关闭编辑窗口

    最终修改后的文件内容如下

    4、配置hdfs-site.xml

    /usr/local/hadoop/etc/hadoop/hdfs-site.xml用来配置集群中每台主机都可用,指定主机上作为namenode和datanode的目录。

     

    创建文件夹

    cd /usr/local/hadoop

    mkdir hdfs

    mkdir hdfs/name

    mkdir hdfs/data

    cd hdfs

    ls

    你也可以在别的路径下创建上图的文件夹,名称也可以与上图不同,但是需要和hdfs-site.xml中的配置一致。

    sudo vi /usr/local/hadoop/etc/hadoop/hdfs-site.xml

    编辑器打开hdfs-site.xml

    在该文件的<configuration></configuration>之间增加如下内容:

    <property>

    <name>dfs.replication</name>

    <value>1</value>

    </property>

    <property>

    <name>dfs.namenode.name.dir</name>

    <value>file:/usr/local/hadoop/hdfs/name</value>

    </property>

    <property>

    <name>dfs.datanode.data.dir</name>

    <value>file:/usr/local/hadoop/hdfs/data</value>

    </property>

    保存、关闭编辑窗口

    最终修改后的文件内容如下:

    5、格式化hdfs

    hdfs namenode -format

    只需要执行一次即可,如果在hadoop已经使用后再次执行,会清除掉hdfs上的所有数据。

    6、启动Hadoop

    经过上文所描述配置和操作后,下面就可以启动这个单节点的集群

    执行启动命令:

    sbin/start-dfs.sh

    出现错误:

    root@hadoop1:/usr/local/hadoop# sbin/start-dfs.sh

    15/04/23 14:34:09 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

    Starting namenodes on [localhost]

    root@localhost's password:

    localhost: namenode running as process 2296. Stop it first.

    root@localhost's password:

    localhost: datanode running as process 2449. Stop it first.

    Starting secondary namenodes [0.0.0.0]

    root@0.0.0.0's password:

    0.0.0.0: secondarynamenode running as process 2634. Stop it first.

    15/04/23 14:34:35 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

    root@hadoop1:/usr/local/hadoop#

     

    执行该命令时,如果有yes /no提示,输入yes,回车即可。

    接下来,执行:

    sbin/start-yarn.sh

    执行完这两个命令后,Hadoop会启动并运行

     

    执行 jps命令,会看到Hadoop相关的进程:

    出现错误:

    root@hadoop1:/usr/local/hadoop# jps

    The program 'jps' can be found in the following packages:

    * openjdk-7-jdk

    * openjdk-6-jdk

    Try: apt-get install <selected package>

     

     

     

    浏览器打开 http://10.0.15.80:50070/,会看到hdfs管理页面

    浏览器打开http://10.0.15.80:8088,会看到hadoop进程管理页面

    7、WordCount验证

    dfs上创建input目录

    bin/hadoop fs -mkdir -p input

    把hadoop目录下的README.txt拷贝到dfs新建的input里

    hadoop fs -copyFromLocal README.txt input

    运行WordCount

     

    hadoop jar share/hadoop/mapreduce/sources/hadoop-mapreduce-examples-2.6.0-sources.jar org.apache.hadoop.examples.WordCount input output

     

    可以看到执行过程

     

    root@hadoop1:/usr/local/hadoop# hadoop jar share/hadoop/mapreduce/sources/hadoop-mapreduce-examples-2.6.0-sources.jar org.apache.hadoop.examples.WordCount input output

    15/04/23 14:53:07 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

    15/04/23 14:53:08 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032

    15/04/23 14:53:09 INFO input.FileInputFormat: Total input paths to process : 1

    15/04/23 14:53:10 INFO mapreduce.JobSubmitter: number of splits:1

    15/04/23 14:53:10 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1429770996011_0001

    15/04/23 14:53:10 INFO impl.YarnClientImpl: Submitted application application_1429770996011_0001

    15/04/23 14:53:10 INFO mapreduce.Job: The url to track the job: http://hadoop1:8088/proxy/application_1429770996011_0001/

    15/04/23 14:53:10 INFO mapreduce.Job: Running job: job_1429770996011_0001

    15/04/23 14:53:21 INFO mapreduce.Job: Job job_1429770996011_0001 running in uber mode : false

    15/04/23 14:53:21 INFO mapreduce.Job: map 0% reduce 0%

    15/04/23 14:53:28 INFO mapreduce.Job: map 100% reduce 0%

    15/04/23 14:53:37 INFO mapreduce.Job: map 100% reduce 100%

    15/04/23 14:53:38 INFO mapreduce.Job: Job job_1429770996011_0001 completed successfully

    15/04/23 14:53:38 INFO mapreduce.Job: Counters: 49

        File System Counters

            FILE: Number of bytes read=1836

            FILE: Number of bytes written=215161

            FILE: Number of read operations=0

            FILE: Number of large read operations=0

            FILE: Number of write operations=0

            HDFS: Number of bytes read=1479

            HDFS: Number of bytes written=1306

            HDFS: Number of read operations=6

            HDFS: Number of large read operations=0

            HDFS: Number of write operations=2

        Job Counters

            Launched map tasks=1

            Launched reduce tasks=1

            Data-local map tasks=1

            Total time spent by all maps in occupied slots (ms)=4895

            Total time spent by all reduces in occupied slots (ms)=6804

            Total time spent by all map tasks (ms)=4895

            Total time spent by all reduce tasks (ms)=6804

            Total vcore-seconds taken by all map tasks=4895

            Total vcore-seconds taken by all reduce tasks=6804

            Total megabyte-seconds taken by all map tasks=5012480

            Total megabyte-seconds taken by all reduce tasks=6967296

        Map-Reduce Framework

            Map input records=31

            Map output records=179

            Map output bytes=2055

            Map output materialized bytes=1836

            Input split bytes=113

            Combine input records=179

            Combine output records=131

            Reduce input groups=131

            Reduce shuffle bytes=1836

            Reduce input records=131

            Reduce output records=131

            Spilled Records=262

            Shuffled Maps =1

            Failed Shuffles=0

            Merged Map outputs=1

            GC time elapsed (ms)=108

            CPU time spent (ms)=1830

            Physical memory (bytes) snapshot=424964096

            Virtual memory (bytes) snapshot=1383133184

            Total committed heap usage (bytes)=276824064

        Shuffle Errors

            BAD_ID=0

            CONNECTION=0

            IO_ERROR=0

            WRONG_LENGTH=0

            WRONG_MAP=0

            WRONG_REDUCE=0

        File Input Format Counters

            Bytes Read=1366

        File Output Format Counters

            Bytes Written=1306

     

     

    运行完毕后,查看单词统计结果

    hadoop fs -cat output/*

     

    执行结果:

    root@hadoop1:/usr/local/hadoop# hadoop fs -cat output/*

    15/04/23 14:54:40 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

    (BIS),    1

    (ECCN)    1

    (TSU)    1

    (see    1

    5D002.C.1,    1

    740.13)    1

    <http://www.wassenaar.org/>    1

    Administration    1

    Apache    1

    BEFORE    1

    BIS    1

    Bureau    1

    Commerce,    1

    Commodity    1

    Control    1

    Core    1

    Department    1

    ENC    1

    Exception    1

    Export    2

    For    1

    Foundation    1

    Government    1

    Hadoop    1

    Hadoop,    1

    Industry    1

    Jetty    1

    License    1

    Number    1

    Regulations,    1

    SSL    1

    Section    1

    Security    1

    See    1

    Software    2

    Technology    1

    The    4

    This    1

    U.S.    1

    Unrestricted    1

    about    1

    algorithms.    1

    and    6

    and/or    1

    another    1

    any    1

    as    1

    asymmetric    1

    at:    2

    both    1

    by    1

    check    1

    classified    1

    code    1

    code.    1

    concerning    1

    country    1

    country's    1

    country,    1

    cryptographic    3

    currently    1

    details    1

    distribution    2

    eligible    1

    encryption    3

    exception    1

    export    1

    following    1

    for    3

    form    1

    from    1

    functions    1

    has    1

    have    1

    http://hadoop.apache.org/core/    1

    http://wiki.apache.org/hadoop/    1

    if    1

    import,    2

    in    1

    included    1

    includes    2

    information    2

    information.    1

    is    1

    it    1

    latest    1

    laws,    1

    libraries    1

    makes    1

    manner    1

    may    1

    more    2

    mortbay.org.    1

    object    1

    of    5

    on    2

    or    2

    our    2

    performing    1

    permitted.    1

    please    2

    policies    1

    possession,    2

    project    1

    provides    1

    re-export    2

    regulations    1

    reside    1

    restrictions    1

    security    1

    see    1

    software    2

    software,    2

    software.    2

    software:    1

    source    1

    the    8

    this    3

    to    2

    under    1

    use,    2

    uses    1

    using    2

    visit    1

    website    1

    which    2

    wiki,    1

    with    1

    written    1

    you    1

    your    1

     

    三、完全分布式(3个节点集群)

     

     

     

    集群,必须3个节点。

     

    主机

    角色

    备注

    Hadoop-Master

    NameNode,JobTracker

     

    Hadoop-Node1

    DataNode,TaskTracker

     

    Hadoop-Node2

    DataNode,TaskTracker

     

     

     

     

     

     

     

     

    参考:

    http://jingyan.baidu.com/article/27fa73269c02fe46f9271f45.html

    http://www.cnblogs.com/yhason/archive/2013/05/30/3108908.html

    http://www.linuxidc.com/Linux/2015-01/112029.htm

     

  • 相关阅读:
    消息队列rabbitmq/kafka
    centos下redis安全相关
    Ubuntu安装
    python 操作redis集群
    redis 发布订阅
    redis基础
    解决Error parsing SQL Mapper Configuration. Cause: java.io.IOException: Could not find resource com/cqupt/paging/dao/User.xml
    mongodb启动出现Failed to connect to 127.0.0.1:27017 after 5000ms milliseconds,giving up
    MongoDB的安装及安装为windows服务
    解决jsp表达式不能解析的问题
  • 原文地址:https://www.cnblogs.com/heavyhe/p/4546880.html
Copyright © 2011-2022 走看看