zoukankan      html  css  js  c++  java
  • 排序算法之堆排序

    1、基本思想

      堆排序是一种树形选择排序,是对直接选择排序的有效改进。堆的定义如下:具有n个元素的序列(h1,h2,…,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,…,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。

    2、代码示例

    package sort;
    
    import org.junit.Test;
    
    /**
     * 堆排序
     */
    public class HeapSort {
        
        @Test
        public void TestSort(){ 
            int a[]={49,38,65,97,76,13,56,17,18,23,34,5,53,51};  
            sort(a);  
        }
        
        public static void sort(int[] arr) {
            int temp;
            int i;
            int len=arr.length;
            if (arr == null || len <= 1) {
                return;
            }
    
            int half = len / 2;
            for (i = half; i >= 0; i--) {
                maxHeap(arr, len, i);
            }
    
            for (i = len - 1; i >= 1; i--) {
                temp = arr[0];  
                arr[0] = arr[i];  
                arr[i] = temp; 
                maxHeap(arr, i, 0);
            }
            
            for(i=0;i<len;i++){
                System.out.print(arr[i]+" ");  
            }
        }
    
        /*
         * 该函数假设一个元素的两个子节点都满足最大堆的性质(左右子树都是最大堆),
         * 只有跟元素可能违反最大堆性质,那么把该元素以及左右子节点的最大元素找出来,如果该元素已经最大,那么整棵树
         * 都是最大堆,程序退出,否则交换跟元素与最大元素的位置,继续调用maxHeap原最大元素所在的子树。
         */
        private static void maxHeap(int[] arr, int heapSize, int index) {
            int temp;
            int left = index * 2 + 1;
            int right = index * 2 + 2;
    
            int largest = index;
            if (left < heapSize && arr[left] > arr[index]) {
                largest = left;
            }
    
            if (right < heapSize && arr[right] > arr[largest]) {
                largest = right;
            }
    
            if (index != largest) {
                temp = arr[index];  
                arr[index] = arr[largest];  
                arr[largest] = temp;  
                maxHeap(arr, heapSize, largest);
            }
        }
    }

    3、效率分析

  • 相关阅读:
    六:观察者模式
    聊一聊如何接入支付宝
    每天学点SpringCloud(八):使用Apollo做配置中心
    每天学点SpringCloud(七):路由器和过滤器-Zuul
    每天学点SpringCloud(六):Hystrix使用
    每天学点SpringCloud(五):如何使用高可用的Eureka
    每天学点SpringCloud(四):Feign的使用及自定义配置
    每天学点SpringCloud(三):自定义Eureka集群负载均衡策略
    每天学点SpringCloud(二):服务注册与发现Eureka
    每天学点SpringCloud(一):使用SpringBoot2.0.3整合SpringCloud
  • 原文地址:https://www.cnblogs.com/hehaiyang/p/4757905.html
Copyright © 2011-2022 走看看