zoukankan      html  css  js  c++  java
  • 一次SQL分页的优化

    今天优化了一个分页的SQL,以前虽然做了上千个SQL的优化,不过都是一些OLAP的,虽然也有OLTP的不过从来没做过分页优化,所以这里记录一下。

    SQL和执行计划如下:

    SQL> SELECT A.ROWNO,EMS_EVENT_VIEW.* FROM EMS_EVENT_VIEW,
      2  (SELECT * FROM (SELECT ROW_NUMBER() OVER(ORDER BY first_occurrence_time DESC) AS ROWNO,EVENT_ID 
      3                    FROM EMS_EVENT_VIEW
                     WHERE (first_occurrence_time>to_date('2012-02-22 00:00:00','yyyy-mm-dd hh24:mi:ss') 
      4    5                            and first_occurrence_time<to_date('2012-02-29 09:42:35','yyyy-mm-dd hh24:mi:ss')) 
                         or (last_occurrence_time>to_date('2012-02-22 00:00:00','yyyy-mm-dd hh24:mi:ss') 
                             and last_occurrence_time<to_date('2012-02-29 09:42:35','yyyy-mm-dd hh24:mi:ss')))
      6    7    8           WHERE ROWNO>=0 AND ROWNO<=20) A
      9  WHERE EMS_EVENT_VIEW.EVENT_ID=A.EVENT_ID;
    
    
    Plan hash value: 2052413575
    
    -------------------------------------------------------------------------------------------------------------------------------------------------------
    
    PLAN_TABLE_OUTPUT
    ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    | Id  | Operation                          | Name                        | Starts | E-Rows | A-Rows |   A-Time   | Buffers |  OMem |  1Mem | Used-Mem |
    -------------------------------------------------------------------------------------------------------------------------------------------------------
    |   0 | SELECT STATEMENT                   |                             |      1 |        |     20 |00:00:53.37 |     757K|       |       |          |
    |*  1 |  HASH JOIN                         |                             |      1 |     81G|     20 |00:00:53.37 |     757K|  1179K|  1179K| 6598K (0)|
    |*  2 |   VIEW                             |                             |      1 |   2104K|     20 |00:00:30.83 |     101K|       |       |          |
    |*  3 |    WINDOW SORT PUSHED RANK         |                             |      1 |   2104K|     21 |00:00:30.83 |     101K|  4096 |  4096 | 4096  (0)|
    |*  4 |     FILTER                         |                             |      1 |        |   1255K|00:00:30.10 |     101K|       |       |          |
    |   5 |      VIEW                          | EMS_EVENT_VIEW              |      1 |   2104K|   1255K|00:00:28.85 |     101K|       |       |          |
    |   6 |       UNION-ALL                    |                             |      1 |        |   1255K|00:00:28.85 |     101K|       |       |          |
    |   7 |        CONCATENATION               |                             |      1 |        |      0 |00:00:00.01 |     335 |       |       |          |
    |   8 |         TABLE ACCESS BY INDEX ROWID| EMS_EVENT                   |      1 |      1 |      0 |00:00:00.01 |      63 |       |       |          |
    |*  9 |          INDEX RANGE SCAN          | LAST_OCCURRENCE_TIME_INDEX  |      1 |      1 |      0 |00:00:00.01 |      63 |       |       |          |
    |* 10 |         TABLE ACCESS BY INDEX ROWID| EMS_EVENT                   |      1 |      1 |      0 |00:00:00.01 |     272 |       |       |          |
    |* 11 |          INDEX RANGE SCAN          | FIRST_OCCURRENCE_INDEX      |      1 |      1 |      0 |00:00:00.01 |     272 |       |       |          |
    |* 12 |        VIEW                        | index_join_006            |      1 |   2104K|   1255K|00:00:28.84 |     100K|       |       |          |
    |* 13 |         HASH JOIN                  |                             |      1 |        |   3863K|00:00:26.50 |     100K|   195M|     9M|  248M (0)|
    |* 14 |          HASH JOIN                 |                             |      1 |        |   3863K|00:00:13.87 |   63020 |   160M|    10M|  214M (0)|
    |  15 |           PARTITION RANGE ALL      |                             |      1 |   2104K|   3863K|00:00:00.01 |   31419 |       |       |          |
    |  16 |            INDEX FAST FULL SCAN    | IDX_FIRSTTIME_201202        |    338 |   2104K|   3863K|00:00:00.07 |   31419 |       |       |          |
    |  17 |           PARTITION RANGE ALL      |                             |      1 |   2104K|   3863K|00:00:00.01 |   31601 |       |       |          |
    |  18 |            INDEX FAST FULL SCAN    | IDX_LASTOCCURRENCE_201202   |    338 |   2104K|   3863K|00:00:00.06 |   31601 |       |       |          |
    |  19 |          INDEX FAST FULL SCAN      | PK_EMS_EVENT_HISTORY_201202 |      1 |   2104K|   3863K|00:00:00.01 |   37894 |       |       |          |
    |  20 |   VIEW                             | EMS_EVENT_VIEW              |      1 |   3864K|   3867K|00:00:19.34 |     656K|       |       |          |
    |  21 |    UNION-ALL                       |                             |      1 |        |   3867K|00:00:15.47 |     656K|       |       |          |
    |  22 |     TABLE ACCESS FULL              | EMS_EVENT                   |      1 |   3867 |   3950 |00:00:00.02 |    2046 |       |       |          |
    |  23 |     PARTITION RANGE ALL            |                             |      1 |   3860K|   3863K|00:00:07.73 |     654K|       |       |          |
    |  24 |      TABLE ACCESS FULL             | EMS_EVENT_HISTORY           |    338 |   3860K|   3863K|00:00:09.51 |     654K|       |       |          |
    -------------------------------------------------------------------------------------------------------------------------------------------------------
    
    Predicate Information (identified by operation id):
    ---------------------------------------------------
    
       1 - access("EMS_EVENT_VIEW"."EVENT_ID"="from_subquery_003"."EVENT_ID")
       2 - filter(("ROWNO">=:SYS_B_8 AND "ROWNO"<=:SYS_B_9))
       3 - filter(ROW_NUMBER() OVER ( ORDER BY INTERNAL_FUNCTION("FIRST_OCCURRENCE_TIME") DESC )<=:SYS_B_9)
       4 - filter(:SYS_B_8<=:SYS_B_9)
       9 - access("A"."LAST_OCCURRENCE_TIME">TO_DATE(:SYS_B_4,:SYS_B_5) AND "A"."LAST_OCCURRENCE_TIME"<TO_DATE(:SYS_B_6,:SYS_B_7))
      10 - filter((LNNVL("A"."LAST_OCCURRENCE_TIME"<TO_DATE(:SYS_B_6,:SYS_B_7)) OR LNNVL("A"."LAST_OCCURRENCE_TIME">TO_DATE(:SYS_B_4,:SYS_B_5))))
      11 - access("A"."FIRST_OCCURRENCE_TIME">TO_DATE(:SYS_B_0,:SYS_B_1) AND "A"."FIRST_OCCURRENCE_TIME"<TO_DATE(:SYS_B_2,:SYS_B_3))
      12 - filter((("B"."FIRST_OCCURRENCE_TIME">TO_DATE(:SYS_B_0,:SYS_B_1) AND "B"."FIRST_OCCURRENCE_TIME"<TO_DATE(:SYS_B_2,:SYS_B_3)) OR
                  ("B"."LAST_OCCURRENCE_TIME">TO_DATE(:SYS_B_4,:SYS_B_5) AND "B"."LAST_OCCURRENCE_TIME"<TO_DATE(:SYS_B_6,:SYS_B_7))))
      13 - access(ROWID=ROWID)
      14 - access(ROWID=ROWID)


     如果你看不清楚SQL,我在这里再贴一下:

    SELECT A.ROWNO, EMS_EVENT_VIEW.*
      FROM EMS_EVENT_VIEW,
           (SELECT *
              FROM (SELECT ROW_NUMBER() OVER(ORDER BY first_occurrence_time DESC) AS ROWNO,
                           EVENT_ID
                      FROM EMS_EVENT_VIEW
                     WHERE (first_occurrence_time >
                           to_date('2012-02-22 00:00:00',
                                    'yyyy-mm-dd hh24:mi:ss') and
                           first_occurrence_time <
                           to_date('2012-02-29 09:42:35',
                                    'yyyy-mm-dd hh24:mi:ss'))
    ))
             WHERE ROWNO >= 0
               AND ROWNO <= 20) A
     WHERE EMS_EVENT_VIEW.EVENT_ID = A.EVENT_ID;

    这个SQL其实就是一个分页SQL,利用 row_number over 做分页,EMS_EVENT_VIEW是一个视图。这个SQL确实写得很坑爹,它要扫描EMS_EVENT_VIEW两次,其实我们可以改写它,让它扫描一次,而不是自己和自己利用event_id 做自连接。

    EMS_EVENT_VIEW的定义就不贴出来了,涉及保密 。它的大概意思就是 select * from a union all select * from b; 无where 过滤条件。

     因为这个SQL是朋友给我的,我无法连接到他的DB,所以我只有自己做测试了,测试代码如下:

    create table a as select * from dba_objects;
    create table b as select * from dba_objects;

    create view test_view as select * from a
    union all select * from b;

    create index idx_a on a(created ,last_ddl_time);
    create index idx_b on b(created ,last_ddl_time);

    BEGIN
      DBMS_STATS.GATHER_TABLE_STATS(ownname          => 'SCOTT',
                                    tabname          => 'B',
                                    estimate_percent => 100,
                                    method_opt       => 'for all columns size auto',
                                    no_invalidate    => FALSE,
                                    degree           => 4,
                                    cascade          => TRUE);
    END;
    /
    BEGIN
      DBMS_STATS.GATHER_TABLE_STATS(ownname          => 'SCOTT',
                                    tabname          => 'B',
                                    estimate_percent => 100,
                                    method_opt       => 'for all columns size auto',
                                    no_invalidate    => FALSE,
                                    degree           => 4,
                                    cascade          => TRUE);
    END;
    /

    要优化的SQL可以改写成如下代码,只访问一次视图:

    select * from 
    (
    select t.*,rownum rn from 
    (select /*+ INDEX(TEST_VIEW.A idx_a) INDEX(TEST_VIEW.b idx_b) */ *
      from test_view
     where created > to_date('2010-01-01', 'yyyy-mm-dd') or
           LAST_DDL_TIME < to_date('2007-0101', 'yyyy-mm-dd')
     order by created desc 
    ) t where rownum<=20
    ) where rn>=0;

    现在来看它的执行计划

    SQL> select * from
      2  (
      3  select t.*,rownum rn from
      4  (select /*+ INDEX(TEST_VIEW.A idx_a) INDEX(TEST_VIEW.b idx_b) */ *
      5    from test_view
      6   where created > to_date('2010-01-01', 'yyyy-mm-dd') or
      7         LAST_DDL_TIME < to_date('2007-0101', 'yyyy-mm-dd')
      8   order by created desc
      9  ) t where rownum<=20
     10  ) where rn>=0;
    
    已选择20行。
    
    已用时间:  00: 00: 00.10
    
    执行计划
    ----------------------------------------------------------
    Plan hash value: 1808710389
    
    -------------------------------------------------------------------------------------------------------
    | Id  | Operation                         | Name      | Rows  | Bytes |TempSpc| Cost (%CPU)| Time     |
    -------------------------------------------------------------------------------------------------------
    |   0 | SELECT STATEMENT                  |           |    20 |  3800 |       |  1898   (2)| 00:00:23 |
    |*  1 |  VIEW                             |           |    20 |  3800 |       |  1898   (2)| 00:00:23 |
    |*  2 |   COUNT STOPKEY                   |           |       |       |       |            |          |
    |   3 |    VIEW                           |           | 70304 |    11M|       |  1898   (2)| 00:00:23 |
    |*  4 |     SORT ORDER BY STOPKEY         |           | 70304 |  6659K|    17M|  1898   (2)| 00:00:23 |
    |   5 |      VIEW                         | TEST_VIEW | 70304 |  6659K|       |   329   (5)| 00:00:04 |
    |   6 |       UNION-ALL PARTITION         |           |       |       |       |            |          |
    |   7 |        TABLE ACCESS BY INDEX ROWID| A         |  1650 |   156K|       |   238   (3)| 00:00:03 |
    |*  8 |         INDEX FULL SCAN           | IDX_A     |  1650 |       |       |   199   (4)| 00:00:03 |
    |   9 |        TABLE ACCESS BY INDEX ROWID| B         |  1650 |   156K|       |   238   (3)| 00:00:03 |
    |* 10 |         INDEX FULL SCAN           | IDX_B     |  1650 |       |       |   199   (4)| 00:00:03 |
    -------------------------------------------------------------------------------------------------------
    
    Predicate Information (identified by operation id):
    ---------------------------------------------------
    
       1 - filter("RN">=0)
       2 - filter(ROWNUM<=20)
       4 - filter(ROWNUM<=20)
       8 - filter("CREATED">TO_DATE('2010-01-01 00:00:00', 'yyyy-mm-dd hh24:mi:ss') OR
                  "LAST_DDL_TIME"<TO_DATE('2007-0101','yyyy-mm-dd'))
      10 - filter("CREATED">TO_DATE('2010-01-01 00:00:00', 'yyyy-mm-dd hh24:mi:ss') OR
                  "LAST_DDL_TIME"<TO_DATE('2007-0101','yyyy-mm-dd'))
    
    
    统计信息
    ----------------------------------------------------------
              8  recursive calls
              0  db block gets
            566  consistent gets
              9  physical reads
              0  redo size
           2621  bytes sent via SQL*Net to client
            411  bytes received via SQL*Net from client
              3  SQL*Net roundtrips to/from client
              1  sorts (memory)
              0  sorts (disk)
             20  rows processed

    逻辑读566,那么这样改写是不是最优化的呢?显然不是,因为索引 IDX_A,IDX_B 都是走的 index full scan,会扫描整个索引block,原始的SQL这个索引里面有3863K 条数据,性能肯定是很低的。 所以进一步的 改写SQL 如下:
    select * from
    (
    select t.*,rownum rn from
    (
    select * from
    (select * from
    (
    select /*+ index_desc(a) */ *
      from a
     where created > to_date('2010-01-01', 'yyyy-mm-dd') or
           LAST_DDL_TIME < to_date('2007-0101', 'yyyy-mm-dd')
     order by created desc 
    ) where rownum<=20
    union all
    select * from
    (
    select /*+ index_desc(b) */ *
      from b
     where created > to_date('2010-01-01', 'yyyy-mm-dd') or
           LAST_DDL_TIME < to_date('2007-0101', 'yyyy-mm-dd')
     order by created desc 
    ) where rownum<=20
    ) order by created desc
    ) t where rownum<=20
    ) where rn>=0


    执行计划和逻辑读如下:

    SQL> select * from
      2  (
      3  select t.*,rownum rn from
      4  (
      5  select * from
      6  (select * from
      7  (
      8  select /*+ index_desc(a) */ *
      9    from a
     10   where created > to_date('2010-01-01', 'yyyy-mm-dd') or
     11         LAST_DDL_TIME < to_date('2007-0101', 'yyyy-mm-dd')
     12   order by created desc
     13  ) where rownum<=20
     14  union all
     15  select * from
     16  (
     17  select /*+ index_desc(b) */ *
     18    from b
     19   where created > to_date('2010-01-01', 'yyyy-mm-dd') or
     20         LAST_DDL_TIME < to_date('2007-0101', 'yyyy-mm-dd')
     21   order by created desc
     22  ) where rownum<=20
     23  ) order by created desc
     24  ) t where rownum<=20
     25  ) where rn>=0;
    
    已选择20行。
    
    已用时间:  00: 00: 00.04
    
    执行计划
    ----------------------------------------------------------
    Plan hash value: 3460309830
    
    ---------------------------------------------------------------------------------------------
    | Id  | Operation                           | Name  | Rows  | Bytes | Cost (%CPU)| Time     |
    ---------------------------------------------------------------------------------------------
    |   0 | SELECT STATEMENT                    |       |    20 |  3800 |   244   (4)| 00:00:03 |
    |*  1 |  VIEW                               |       |    20 |  3800 |   244   (4)| 00:00:03 |
    |*  2 |   COUNT STOPKEY                     |       |       |       |            |          |
    |   3 |    VIEW                             |       |    40 |  7080 |   244   (4)| 00:00:03 |
    |*  4 |     SORT ORDER BY STOPKEY           |       |    40 |  7080 |   244   (4)| 00:00:03 |
    |   5 |      VIEW                           |       |    40 |  7080 |   243   (3)| 00:00:03 |
    |   6 |       UNION-ALL                     |       |       |       |            |          |
    |*  7 |        COUNT STOPKEY                |       |       |       |            |          |
    |   8 |         VIEW                        |       |  1650 |   285K|   238   (3)| 00:00:03 |
    |   9 |          TABLE ACCESS BY INDEX ROWID| A     |  1650 |   156K|   238   (3)| 00:00:03 |
    |* 10 |           INDEX FULL SCAN DESCENDING| IDX_A |  1650 |       |   199   (4)| 00:00:03 |
    |* 11 |        COUNT STOPKEY                |       |       |       |            |          |
    |  12 |         VIEW                        |       |    20 |  3540 |     5   (0)| 00:00:01 |
    |  13 |          TABLE ACCESS BY INDEX ROWID| B     |    20 |  1940 |     5   (0)| 00:00:01 |
    |* 14 |           INDEX FULL SCAN DESCENDING| IDX_B |  1650 |       |     4   (0)| 00:00:01 |
    ---------------------------------------------------------------------------------------------
    
    Predicate Information (identified by operation id):
    ---------------------------------------------------
    
       1 - filter("RN">=0)
       2 - filter(ROWNUM<=20)
       4 - filter(ROWNUM<=20)
       7 - filter(ROWNUM<=20)
      10 - filter("CREATED">TO_DATE('2010-01-01 00:00:00', 'yyyy-mm-dd hh24:mi:ss') OR
                  "LAST_DDL_TIME"<TO_DATE('2007-0101','yyyy-mm-dd'))
      11 - filter(ROWNUM<=20)
      14 - filter("CREATED">TO_DATE('2010-01-01 00:00:00', 'yyyy-mm-dd hh24:mi:ss') OR
                  "LAST_DDL_TIME"<TO_DATE('2007-0101','yyyy-mm-dd'))
    
    
    统计信息
    ----------------------------------------------------------
              1  recursive calls
              0  db block gets
             10  consistent gets
              0  physical reads
              0  redo size
           2457  bytes sent via SQL*Net to client
            411  bytes received via SQL*Net from client
              3  SQL*Net roundtrips to/from client
              1  sorts (memory)
              0  sorts (disk)
             20  rows processed


    逻辑读整整下降了60倍。

    现在根据这个案例来谈谈SQL分页的优化思路,SQL分页通常要进行排序,比如select xxxx from t where 条件 order by ......

    优化分页SQL可以重点关注 order by 这个条件,写SQL的时候要让ORACLE 对 order by 列 上的索引进行有序的扫描,然后根据stopkey 停止,也就是不要把索引的block全都给扫描了,应该扫描一部分block就停止。

  • 相关阅读:
    一张大图看懂Mvc启动过程
    NopCommerce 3. Controller 分析
    NopCommerce 1. NopCommerce Application_Start启动过程
    sublime addons backup
    vs2012中使用localdb实例还原一个sql server 2008r2版本的数据库
    使用TestNG进行浏览器(IE、Chrome、FireFox)并发兼容性测试
    Selenium调用IE时报“The path to the driver executable must be set by the webdriver.ie.driver system property”
    启动带有用户配置信息的FireFox浏览器
    Selenium_Chrome浏览器调用
    Selenium_IE11_FireFox调用实例
  • 原文地址:https://www.cnblogs.com/hehe520/p/6330550.html
Copyright © 2011-2022 走看看