zoukankan      html  css  js  c++  java
  • 洛谷 P3455 [POI2007]ZAP-Queries || 洛谷P2522,bzoj2301

    https://www.luogu.org/problemnew/show/P3455

    就是https://www.cnblogs.com/hehe54321/p/9315244.html里面的方法2了,升级版的整除分块,可以两个变量一起搞

    预处理莫比乌斯函数的前缀和之后就可以每次$O(sqrt{n}+sqrt{m})$回答

    那篇题解里面用了一个技巧:${lfloor}frac{{lfloor}frac{a}{b}{ floor}}{c}{ floor}={lfloor}frac{a}{bc}{ floor}$

    (当然a,b,c都为正整数)

    证了好久。。。

    这么证:

    设${lfloor}frac{a}{bc}{ floor}=p$,则p为整数,且$p<=frac{a}{bc}<p+1$

    则$pc<=frac{a}{b}<pc+c$

    而$pc$与$pc+c$都为整数

    因此$pc<={lfloor}frac{a}{b}{ floor}<pc+c$

    所以$p<=frac{{lfloor}frac{a}{b}{ floor}}{c}<p+1$

    所以${lfloor}frac{{lfloor}frac{a}{b}{ floor}}{c}{ floor}=p={lfloor}frac{a}{bc}{ floor}$

     1 #include<cstdio>
     2 #include<algorithm>
     3 #include<cstring>
     4 #include<vector>
     5 using namespace std;
     6 #define fi first
     7 #define se second
     8 #define mp make_pair
     9 #define pb push_back
    10 typedef long long ll;
    11 typedef unsigned long long ull;
    12 typedef pair<int,int> pii;
    13 #define N 50100
    14 ll prime[N+100],len,mu[N+100],dd[N+100];
    15 bool nprime[N+100];
    16 ll a,c,n,m,k,ans,ed;
    17 int main()
    18 {
    19     ll i,j,T,TT;
    20     mu[1]=1;
    21     for(i=2;i<=N;i++)
    22     {
    23         if(!nprime[i])    prime[++len]=i,mu[i]=-1;
    24         for(j=1;j<=len&&i*prime[j]<=N;j++)
    25         {
    26             nprime[i*prime[j]]=1;
    27             if(i%prime[j]==0)    {mu[i*prime[j]]=0;break;}
    28             else    mu[i*prime[j]]=-mu[i];
    29         }
    30     }
    31     for(i=1;i<=N;i++)    dd[i]=dd[i-1]+mu[i];
    32     scanf("%lld",&T);
    33     for(TT=1;TT<=T;TT++)
    34     {
    35         scanf("%lld%lld%lld",&n,&m,&k);n/=k;m/=k;
    36         ans=0;
    37         if(n>m)    swap(n,m);
    38         for(i=1;i<=n;i=j+1)
    39         {
    40             j=min(n,min(n/(n/i),m/(m/i)));
    41             ans+=(dd[j]-dd[i-1])*(n/i)*(m/i);
    42         }
    43         printf("%lld
    ",ans);
    44     }
    45     return 0;
    46 }

    https://www.luogu.org/problemnew/show/P2522

    https://www.lydsy.com/JudgeOnline/problem.php?id=2301

    这题基本一样的,就是加个容斥。。

     1 #include<cstdio>
     2 #include<algorithm>
     3 #include<cstring>
     4 #include<vector>
     5 using namespace std;
     6 #define fi first
     7 #define se second
     8 #define mp make_pair
     9 #define pb push_back
    10 typedef long long ll;
    11 typedef unsigned long long ull;
    12 typedef pair<int,int> pii;
    13 #define N 50100
    14 ll prime[N+100],len,mu[N+100],dd[N+100];
    15 bool nprime[N+100];
    16 ll a,c,n,m,k;
    17 ll calc(ll n,ll m)
    18 {
    19     if(n==0||m==0)    return 0;
    20     ll ans=0;
    21     if(n>m)    swap(n,m);
    22     n/=k;m/=k;
    23     for(ll i=1,j;i<=n;i=j+1)
    24     {
    25         j=min(n,min(n/(n/i),m/(m/i)));
    26         ans+=(dd[j]-dd[i-1])*(n/i)*(m/i);
    27     }
    28     return ans;
    29 }
    30 int main()
    31 {
    32     ll i,j,T,TT;
    33     mu[1]=1;
    34     for(i=2;i<=N;i++)
    35     {
    36         if(!nprime[i])    prime[++len]=i,mu[i]=-1;
    37         for(j=1;j<=len&&i*prime[j]<=N;j++)
    38         {
    39             nprime[i*prime[j]]=1;
    40             if(i%prime[j]==0)    {mu[i*prime[j]]=0;break;}
    41             else    mu[i*prime[j]]=-mu[i];
    42         }
    43     }
    44     for(i=1;i<=N;i++)    dd[i]=dd[i-1]+mu[i];
    45     scanf("%lld",&T);
    46     for(TT=1;TT<=T;TT++)
    47     {
    48         scanf("%lld%lld%lld%lld%lld",&a,&n,&c,&m,&k);
    49         printf("%lld
    ",calc(n,m)-calc(a-1,m)-calc(n,c-1)+calc(a-1,c-1));
    50     }
    51     return 0;
    52 }
  • 相关阅读:
    数据结构化与保存
    爬取基础2
    爬取校园新闻首页的新闻的详情,使用正则表达式,函数抽离
    爬虫基础
    中文词频
    使用docker搭建rabbitmq集群
    centos安装rabbitmq
    git查看仓库地址以及修改远程仓库
    网易云邮箱账号
    jmeter提取登录cookie实现跨线程组保持登录
  • 原文地址:https://www.cnblogs.com/hehe54321/p/9317491.html
Copyright © 2011-2022 走看看