zoukankan      html  css  js  c++  java
  • BFL ekf imu and odom

    ros bfl

    // refer to : https://blog.csdn.net/zhxue_11/article/details/83822462

    #include <filter/extendendkalmanfilter.h>
    #include <model/linearanalyticsystemmodel_gaussianuncertainty.h>
    #include <model/linearanalyticmeasurementmodel_gaussianuncertainty.h>
    #include <pdf/linearanalyticsystemmodel_gaussianuncertainty.h>
    #include <pdf/linearanalyticmeasurementmodel_gaussianuncertainty.h>
    #include "../mobile_robot.h"
    #include "../mobile_robot_wall_cts.h"
    
    using namespace MatrixWrapper;
    using namespace BFL;
    using namespace std;
    
    // sys model  :  x(k) = A*x(k-1) + B*u(k-1)
    
    Matrix A(2,2);
    A(1,1) = 1.0;
    A(1,2) = 0.0;
    A(2,1) = 0.0;
    A(2,2) = 1.0;
    
    Matrix B(2,2);
    B(1,1) = cos(0.8);
    B(1,2) = 0.0;
    B(2,1) = sin(0.8);
    B(2,2) = 0.0;
    
    vector<Matrix> AB(2);
    AB[0] = A;
    AB[1] = B;
    
    ColumnVector sysNoise_Mu(2);
    sysNoise_Mu(1) = MU_SYSTEM_NOISE_X;
    sysNoise_Mu(2) = MU_SYSTEM_NOISE_Y;
    
    SymmetricMatrix sysNoise_Cov(2);
    sysNoise_Cov = 0.0;
    sysNoise_Cov(1,1) = SIGMA_SYSTEM_NOISE_X;
    sysNoise_Cov(1,2) = 0.0;
    sysNoise_Cov(2,1) = 0.0;
    sysNoise_Cov(2,2) = SIGMA_SYSTEM_NOISE_Y;
    
    Gaussian system_Uncertainty(sysNoise_Mu, sysNoise_Cov);
    LinearAnalyticConditionalGaussian sys_pdf(AB, system_Uncertainty);
    LinearAnalyticSystemModelGaussianUncertainty sys_model(&sys_pdf);
    
    // measure model z(k+1) = H*x(k+1)
    
    Matrix H(1,2);
    double wall_ct = 2/(sqrt(pow(RICO_WALL,2.0) + 1));
    H = 0.0;
    H(1,1) = wall_ct * RICO_WALL;
    H(1,2) = 0 - wall_ct;
    
    ColumnVector measNoise_Mu(1);
    measNoise_Mu(1) = MU_MEAS_NOISE; //噪音均值
    SymmetricMatrix measNoise_Cov(1);
    measNoise_Cov(1,1) = SIGMA_MEAS_NOISE;  //噪音协方差矩阵(σ^2)
    Gaussian measurement_Uncertainty(measNoise_Mu, measNoise_Cov);
    
    LinearAnalyticConditionalGaussian meas_pdf(H, measurement_Uncertainty);
    LinearAnalyticMeasurementModelGaussianUncertainty meas_model(&meas_pdf);
    
    // build the filter
    ColumnVector prior_Mu(2);
    prior_Mu(1) = PRIOR_MU_X;
    prior_Mu(2) = PRIOR_MU_Y;
    SymmetricMatrix prior_Cov(2);
    prior_Cov(1,1) = PRIOR_COV_X;
    prior_Cov(1,2) = 0.0;
    prior_Cov(2,1) = 0.0;
    prior_Cov(2,2) = PRIOR_COV_Y;
    Gaussian prior(prior_Mu, prior_Cov);// very like system model construction;
    ExtendedKalmanFilter filter(&prior_cont);
    
    // update the filter with input and measure
    MobileRobot mobile_robot;
    mobile_robot.Move( input );
    ColumnVector measurement = mobile_robot.Measure();
    filter->Update(&sys_model,input,&meas_model, measurement);
    
    // get the result
    Pdf<ColumnVector> * posterior = filter->PostGet();
    posterior->ExpectedValueGet();
    posterior->CovarianceGet();
    

    BFL particle

    http://wiki.ros.org/bfl/Tutorials/Example of using a particle filter for localization by bfl library

    ros robot_pose_ekf code

    //crreate sys model and odom imu model
    OdomEstimation::OdomEstimation():
    {
        ColumnVector sysNoise_Mu(6);  sysNoise_Mu = 0;
        SymmetricMatrix sysNoise_Cov(6); sysNoise_Cov = 0;
        for (unsigned int i=1; i<=6; i++) sysNoise_Cov(i,i) = pow(1000.0,2);
        Gaussian system_Uncertainty(sysNoise_Mu, sysNoise_Cov);
        sys_pdf_   = new NonLinearAnalyticConditionalGaussianOdo(system_Uncertainty);
        sys_model_ = new AnalyticSystemModelGaussianUncertainty(sys_pdf_);
    
        // create MEASUREMENT MODEL ODOM
        ColumnVector measNoiseOdom_Mu(6);  measNoiseOdom_Mu = 0;
        SymmetricMatrix measNoiseOdom_Cov(6);  measNoiseOdom_Cov = 0;
        for (unsigned int i=1; i<=6; i++) measNoiseOdom_Cov(i,i) = 1;
        Gaussian measurement_Uncertainty_Odom(measNoiseOdom_Mu, measNoiseOdom_Cov);
        Matrix Hodom(6,6);  Hodom = 0;
        Hodom(1,1) = 1;    Hodom(2,2) = 1;    Hodom(6,6) = 1;
        odom_meas_pdf_   = new LinearAnalyticConditionalGaussian(Hodom, measurement_Uncertainty_Odom);
        odom_meas_model_ = new LinearAnalyticMeasurementModelGaussianUncertainty(odom_meas_pdf_);
    
        // create MEASUREMENT MODEL IMU
        ColumnVector measNoiseImu_Mu(3);  measNoiseImu_Mu = 0;
        SymmetricMatrix measNoiseImu_Cov(3);  measNoiseImu_Cov = 0;
        for (unsigned int i=1; i<=3; i++) measNoiseImu_Cov(i,i) = 1;
        Gaussian measurement_Uncertainty_Imu(measNoiseImu_Mu, measNoiseImu_Cov);
        Matrix Himu(3,6);  Himu = 0;
        Himu(1,4) = 1;    Himu(2,5) = 1;    Himu(3,6) = 1;
        imu_meas_pdf_   = new LinearAnalyticConditionalGaussian(Himu, measurement_Uncertainty_Imu);
        imu_meas_model_ = new LinearAnalyticMeasurementModelGaussianUncertainty(imu_meas_pdf_);
    }
    
    // callback function for odom data
    void OdomEstimationNode::odomCallback(const OdomConstPtr& odom)
    {
    	// receive data 
    	odom_stamp_ = odom->header.stamp;
    	odom_time_  = Time::now();
    	Quaternion q;
    	tf::quaternionMsgToTF(odom->pose.pose.orientation, q);
    	odom_meas_  = Transform(q, Vector3(odom->pose.pose.position.x, odom->pose.pose.position.y, 0));
    	for (unsigned int i=0; i<6; i++)
    	  for (unsigned int j=0; j<6; j++)
    	    odom_covariance_(i+1, j+1) = odom->pose.covariance[6*i+j];
    
    	my_filter_.addMeasurement(StampedTransform(odom_meas_.inverse(), odom_stamp_, base_footprint_frame_, "wheelodom"), odom_covariance_);
    };
    
    
    // callback function for imu data
    void OdomEstimationNode::imuCallback(const ImuConstPtr& imu)
    {
    	imu_callback_counter_++;
    	assert(imu_used_);
    	// receive data 
    	imu_stamp_ = imu->header.stamp;
    	tf::Quaternion orientation;
    	quaternionMsgToTF(imu->orientation, orientation); // only use imu orientation  and all the acc  is ingnored !
    	imu_meas_ = tf::Transform(orientation, tf::Vector3(0,0,0));
    	for (unsigned int i=0; i<3; i++)
    	  for (unsigned int j=0; j<3; j++)
    	    imu_covariance_(i+1, j+1) = imu->orientation_covariance[3*i+j];// and alos use orientation_covariance
    
    	StampedTransform base_imu_offset;
    	robot_state_.lookupTransform(base_footprint_frame_, imu->header.frame_id, imu_stamp_, base_imu_offset);
    	imu_meas_ = imu_meas_ * base_imu_offset;
    	imu_time_  = Time::now();
    
    	// manually set covariance untile imu sends covariance
    	if (imu_covariance_(1,1) == 0.0){
    	  SymmetricMatrix measNoiseImu_Cov(3);  measNoiseImu_Cov = 0;
    	  measNoiseImu_Cov(1,1) = pow(0.00017,2);  // = 0.01 degrees / sec
    	  measNoiseImu_Cov(2,2) = pow(0.00017,2);  // = 0.01 degrees / sec
    	  measNoiseImu_Cov(3,3) = pow(0.00017,2);  // = 0.01 degrees / sec
    	  imu_covariance_ = measNoiseImu_Cov;
    	}
    
    	my_filter_.addMeasurement(StampedTransform(imu_meas_.inverse(), imu_stamp_, base_footprint_frame_, "imu"), imu_covariance_); // send_imu_transform
    };
    
    // update filter
    bool OdomEstimation::update(bool odom_active, bool imu_active, bool gps_active, bool vo_active, const Time&  filter_time, bool& diagnostics_res)
    {
    	// system update filter
    	// --------------------
    	// for now only add system noise
    	ColumnVector vel_desi(2); vel_desi = 0;
    	filter_->Update(sys_model_, vel_desi);
    	// process odom measurement
    	if (odom_active){
    		transformer_.lookupTransform("wheelodom", base_footprint_frame_, filter_time, odom_meas_);
    		if (odom_initialized_){
    			// convert absolute odom measurements to relative odom measurements in horizontal plane
    			Transform odom_rel_frame =  Transform(tf::createQuaternionFromYaw(filter_estimate_old_vec_(6)), 
    							      filter_estimate_old_.getOrigin()) * odom_meas_old_.inverse() * odom_meas_;
    			ColumnVector odom_rel(6); 
    			decomposeTransform(odom_rel_frame, odom_rel(1), odom_rel(2), odom_rel(3), odom_rel(4), odom_rel(5), odom_rel(6));
    			angleOverflowCorrect(odom_rel(6), filter_estimate_old_vec_(6));
    			// update filter
    			odom_meas_pdf_->AdditiveNoiseSigmaSet(odom_covariance_ * pow(dt,2));
    
    		    ROS_DEBUG("Update filter with odom measurement %f %f %f %f %f %f", 
    		          odom_rel(1), odom_rel(2), odom_rel(3), odom_rel(4), odom_rel(5), odom_rel(6));
    			filter_->Update(odom_meas_model_, odom_rel);
    			diagnostics_odom_rot_rel_ = odom_rel(6);
    		}
    		else{
    			odom_initialized_ = true;
    			diagnostics_odom_rot_rel_ = 0;
    		}
    		odom_meas_old_ = odom_meas_;
    	}
    
    	// process imu measurement
    	// -----------------------
    	if (imu_active){
    		if (!transformer_.canTransform(base_footprint_frame_,"imu", filter_time)){
    			ROS_ERROR("filter time older than imu message buffer");
    			return false;
    		}
    		transformer_.lookupTransform("imu", base_footprint_frame_, filter_time, imu_meas_);
    		if (imu_initialized_){
    			// convert absolute imu yaw measurement to relative imu yaw measurement 
    			Transform imu_rel_frame =  filter_estimate_old_ * imu_meas_old_.inverse() * imu_meas_;
    			ColumnVector imu_rel(3); double tmp;
    			decomposeTransform(imu_rel_frame, tmp, tmp, tmp, tmp, tmp, imu_rel(3));
    			decomposeTransform(imu_meas_, tmp, tmp, tmp, imu_rel(1), imu_rel(2), tmp);
    			angleOverflowCorrect(imu_rel(3), filter_estimate_old_vec_(6));
    			diagnostics_imu_rot_rel_ = imu_rel(3);
    			// update filter
    			imu_meas_pdf_->AdditiveNoiseSigmaSet(imu_covariance_ * pow(dt,2));
    			filter_->Update(imu_meas_model_,  imu_rel);
    		}
    		else{
    			imu_initialized_ = true;
    			diagnostics_imu_rot_rel_ = 0;
    		}
    		imu_meas_old_ = imu_meas_; 
    	}
    }
    
  • 相关阅读:
    web服务器,应用程序服务器,http服务器的区别
    tomcat、weblogic、jboss的区别,容器的作用
    linux系统编辑神器 -vim用法大全
    web弹出对话框
    c#获取打印机列表
    cookie
    lodop打印多页
    lodop判断是否打印成功
    一般处理程序
    让图片在div中居中
  • 原文地址:https://www.cnblogs.com/heimazaifei/p/13397745.html
Copyright © 2011-2022 走看看