四、在全部的六边形区域内过滤出合适的区域作为虚拟车站点
实现方式:
对历史库的订单数据进行汇总,选出某个区域的订单数大于某个阈值(比如100)
代码实现:
//1.创建h3实例 val h3 = H3Core.newInstance //2.经纬度转换成hash值 def locationToH3(lat: Double, lon: Double, res: Int): Long = { h3.geoToH3(lat, lon, res) } //将h3注册为udf函数 sparkSession.udf.register("locationToH3", locationToH3 _) 4.//在sql语句中使用h3接口进行六边形栅格化 val gridDf = sparkSession.sql( s""" |select |ORDER_ID, |CITY_ID, |STARTING_LNG, |STARTING_LAT, |locationToH3(STARTING_LAT,STARTING_LNG,12) as h3code | from order |""".stripMargin ) //5.分组统计 得到大于100个订单的区域 val groupCountDf = gridDf.groupBy("h3code").count().filter("count>=100") //统计结果注册临时视图 groupCountDf.createOrReplaceTempView("groupcount") //6.使用过滤后的区域与原始所有订单表进行join操作,升序取出最小精度,最小维度的点作为虚拟车站的经纬度位置信息,得到虚拟车站 val groupJoinDf = sparkSession.sql( s""" |select |ORDER_ID, |CITY_ID, |STARTING_LNG, |STARTING_LAT, |row_number() over(partition by order_grid.h3code order by STARTING_LNG,STARTING_LAT asc) rn | from order_grid join groupcount on order_grid.h3code = groupcount.h3code |having(rn=1) |""".stripMargin)
五、求出某地市的某个区有多少个虚拟车站
如何实现:
1.查询出地市区边界的ip集合
借助高德或者自己公司的地图api来
https://lbs.amap.com/api/webservice/guide/api/district


2.借助空间几何WKT工具判断现有的经纬度点位是否该地区内
WKT 链接: https://blog.csdn.net/Claire_ll/article/details/84952339
判断一个点是不是在多边形内 实例代码:
String wktPoly = "POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10))"; //请自行搜素了解wkt格式 String wktPoint = "POINT (30 30)"; WKTReader reader = new WKTReader(JTSFactoryFinder.getGeometryFactory()); GeometryFactory geometryFactory = JTSFactoryFinder.getGeometryFactory(null); Geometry point = reader.read(wktPoint); Geometry poly = reader.read(wktPoly); poly.contains(point); //返回true或false
//获取雨花台区的边界ip集合
List<District> districtList = new ArrayList<District>();
JSONArray districts = MapUtil.getDistricts("雨花台区", null);
MapUtil.parseDistrictInfo(districts, null, districtList);
GeometryFactory geometryFactory = JTSFactoryFinder.getGeometryFactory(null);
WKTReader reader = new WKTReader(geometryFactory);
// 用南京所有区的所有边界值经纬 构建多个多边形区域
List<Geometry> polygons = districtList.stream().map(district -> {
String wktPolygon = "POLYGON((" + district.getPolygon().replaceAll(",", " ").replaceAll(";", ",")
+ "))";
//得到多边形对象
Geometry polygon = null;
try {
polygon = reader.read(wktPolygon);
} catch (ParseException e) {
e.printStackTrace();
}
return polygon;
}).collect(Collectors.toList());
//使用 经纬度构建点
/**
* 江苏省 南京市 雨花台区
*
* 经度:118.77
* 纬度:32.00
*/
//测试这个ip在不在雨花台区
String wktPoint = "POINT(118.77 32.00)";
//
Point point = (Point) reader.read(wktPoint);
//判断多边形是否包含点 雨花台区是否包含ip 118.772222 32.779990
polygons.forEach(polygon -> System.out.println(polygon.contains(point)));
3.经纬度存在某个地区,则把该虚拟车站经纬度与城市名保存到hbase或者数据库中,供前端进行点位展示