Too Simple
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1214 Accepted Submission(s): 406
Problem Description
Rhason Cheung had a simple problem, and asked Teacher Mai for help. But Teacher Mai thought this problem was too simple, sometimes naive. So she ask you for help.
Teacher Mai has m functions f1,f2,⋯,fm:{1,2,⋯,n}→{1,2,⋯,n}(that means for all x∈{1,2,⋯,n},f(x)∈{1,2,⋯,n}). But Rhason only knows some of these functions, and others are unknown.
She wants to know how many different function series f1,f2,⋯,fm there are that for every i(1≤i≤n),f1(f2(⋯fm(i)))=i. Two function series f1,f2,⋯,fm and g1,g2,⋯,gm are considered different if and only if there exist i(1≤i≤m),j(1≤j≤n),fi(j)≠gi(j).
Teacher Mai has m functions f1,f2,⋯,fm:{1,2,⋯,n}→{1,2,⋯,n}(that means for all x∈{1,2,⋯,n},f(x)∈{1,2,⋯,n}). But Rhason only knows some of these functions, and others are unknown.
She wants to know how many different function series f1,f2,⋯,fm there are that for every i(1≤i≤n),f1(f2(⋯fm(i)))=i. Two function series f1,f2,⋯,fm and g1,g2,⋯,gm are considered different if and only if there exist i(1≤i≤m),j(1≤j≤n),fi(j)≠gi(j).
Input
For each test case, the first lines contains two numbers n,m(1≤n,m≤100).
The following are m lines. In i-th line, there is one number −1 or n space-separated numbers.
If there is only one number −1, the function fi is unknown. Otherwise the j-th number in the i-th line means fi(j).
The following are m lines. In i-th line, there is one number −1 or n space-separated numbers.
If there is only one number −1, the function fi is unknown. Otherwise the j-th number in the i-th line means fi(j).
Output
For each test case print the answer modulo 109+7.
Sample Input
3 3
1 2 3
-1
3 2 1
Sample Output
1
Hint
The order in the function series is determined. What she can do is to assign the values to the unknown functions.一开始看起来很复杂,想了想发现只要保证最后一个函数是任意的,中间的其他函数都没问题。
但是有一个坑的情况是,可能一个任意函数也没有,全都是固定的函数,这时要验证这组函数是否可行。我们当时验证的顺序弄反,卡了一场,真是too simple。
最近做的题都是模拟题啊,,,太没技术含量了,,,,
1 #include <cstdio> 2 #include <algorithm> 3 #include <cstring> 4 #include <ctype.h> 5 #include <cstdlib> 6 #include <stack> 7 #include <set> 8 #include <map> 9 #include <queue> 10 #include <string> 11 #include <cmath> 12 13 using namespace std; 14 const long long MOD = 1e9+7; 15 16 int N,T,M; 17 int func[200][200],vis[200]; 18 long long nn; 19 20 long long qpow(long long a,long long i,long long n) 21 { 22 if(i == 0) return 1 % n; 23 long long temp = qpow(a,i>>1,n); 24 temp = temp * temp % n; 25 if( i&1 ) temp = temp * a % n; 26 return temp; 27 } 28 29 long long mi(long long a,int t) 30 { 31 long long ans = 1; 32 for(int i=0;i<t;i++) {ans *= a;ans %= MOD;} 33 return ans; 34 } 35 36 long long solve() 37 { 38 for(int i=1;i<=N;i++) 39 { 40 int ans = i; 41 for(int j=M-1;j>=0;j--) 42 { 43 ans = func[j][ans-1]; 44 } 45 if(ans != i) return 0LL; 46 } 47 return 1LL; 48 } 49 50 int main() 51 { 52 while(~scanf("%d%d",&N,&M)) 53 { 54 long long cnt = 0LL,ans = 0LL; 55 nn = 1LL; 56 int flag = 0; 57 for(int i=1; i <= N;i++) {nn *= i; nn %= MOD;} 58 59 for(int i=0;i<M;i++) 60 { 61 memset(vis,0,sizeof vis); 62 if(scanf("%d",&func[i][0]) && (func[i][0] == -1)) 63 { 64 cnt++; 65 } 66 else 67 { 68 vis[func[i][0]]++; 69 for(int j=1;j<N;j++) 70 { 71 scanf("%d",&func[i][j]); 72 if( vis[func[i][j]] ) flag = 1; 73 else vis[func[i][j]]++; 74 } 75 } 76 } 77 78 if(flag) ans = 0LL; 79 else if(cnt > 0) { ans = mi(nn,cnt-1); ans %= MOD;} 80 else 81 { 82 ans = solve(); 83 } 84 85 printf("%I64d ",ans%MOD); 86 } 87 }