zoukankan      html  css  js  c++  java
  • 『Numpy学习指南』排序&索引&抽取函数介绍

    排序:

    numpy.lexsort():

    numpy.lexsort()是个排字典序函数,因为很有意思,感觉也蛮有用的,所以单独列出来讲一下:

    强调一点,本函数只接受一个参数

    1 import numpy as np
    2 
    3 a = np.array([1,2,3,4,5])
    4 b = np.array([50,40,30,20,10])
    5 
    6 c = np.lexsort((a,b))
    7 print(list(zip(a[c],b[c])))
    [(5, 10), (4, 20), (3, 30), (2, 40), (1, 50)]
    

     这是一个间接排序函数,会优先使用后面列排序,后面一样才使用前面的列排序,测试如下:

    1 a = np.array([1,2,3,4,5])
    2 b = np.array([40,40,30,20,10])
    3 
    4 c = np.lexsort((a,b))
    5 print(list(zip(a[c],b[c])))
    [(5, 10), (4, 20), (3, 30), (1, 40), (2, 40)]
    

     交换次序:

    1 a,b = b,a
    2 
    3 c = np.lexsort((a,b))
    4 print(list(zip(a[c],b[c])))
    [(40, 1), (40, 2), (30, 3), (20, 4), (10, 5)]
    

     而且可以按照此规则进行多列排序(大于2个):

    1 a = np.array([1,2,3,4,5])
    2 b = np.array([50,30,40,20,10])
    3 d = np.array([400,300,300,100,200])
    4 
    5 c = np.lexsort((a,b,d))
    6 print(list(zip(a[c],b[c],d[c])))
    [(4, 20, 100), (5, 10, 200), (2, 30, 300), (3, 40, 300), (1, 50, 400)]
    

     numpy中的几种排序手段:

    numpy.sort()           正常排序

    numpy.msort()        正常排序,定死axis=0

    Notes
        -----
        ``np.msort(a)`` is equivalent to  ``np.sort(a, axis=0)``.
    

    array.sort()              原地排序,无return

    numpy.argsort()       间接排序

    numpy.lexsort()        间接排序,字典序

    numpy.sort_complex()      复数排序,先实部后虚部

    1 np.random.seed(42)
    2 complex_number = np.random.random(5) + np.random.random(5)*1j
    3 print(complex_number)
    4 print(np.sort_complex(complex_number)) # 复数排序,先实后虚
    [ 0.37454012+0.15599452j  0.95071431+0.05808361j  0.73199394+0.86617615j
      0.59865848+0.60111501j  0.15601864+0.70807258j]
    [ 0.15601864+0.70807258j  0.37454012+0.15599452j  0.59865848+0.60111501j
      0.73199394+0.86617615j  0.95071431+0.05808361j]
    

     索引:

    np.argmax(a)              最大值索引

    np.nanargmin(b)         忽略nan的最小值索引

    np.argwhere(a<=4)     符合条件的索引

    1 a = np.array([2,4,8])
    2 print(np.argmax(a))
    3 b = np.array([np.nan,2,4])
    4 print(np.nanargmin(b))
    5 c = np.array([2,4,8])
    6 print(np.argwhere(a<=4))
    2
    1
    [[0]
     [1]]
    

    np.searchsorted(a,[-2,7])

    np.insert(a,indices,[-2,7])

    1 a = np.arange(5)
    2 indices = np.searchsorted(a,[-2,7])   # 返回向有序数组中插入,不改变有序性的索引
    3 print(indices)
    4 print(np.insert(a,indices,[-2,7]))    # 插入函数{目标数组,插入索引,插入数组}
    [0 5]
    [-2  0  1  2  3  4  7]
    

     抽取:

    np.extract(condition,a)

    np.where(a%2==0)

    np.nonzero(a)

    1 a = np.arange(7)
    2 condition = (a%2)==0
    3 print(a[a%2==0])                   # 使用布尔索引
    4 print(np.extract(condition,a))     # 使用np.extract()
    5 print(np.where(a%2==0))            # 使用np.where()
    6 print(np.nonzero(a))               # 提取非零元素
    [0 2 4 6]
    [0 2 4 6]
    (array([0, 2, 4, 6]),)
    (array([1, 2, 3, 4, 5, 6]),)
    
  • 相关阅读:
    python IDE安装-mac
    tokudb引擎安装-2
    MariaDB10.2.X-新特性2-支持check约束and with as
    MariaDB10.2.X-新特性1-支持分析函数
    MySQL5.7表空间加密
    MySQL 5.7 SYS scheme解析
    tcpdump抓SQL
    pt-online-schema-change
    查看锁信息
    onlineDDL测试
  • 原文地址:https://www.cnblogs.com/hellcat/p/6874175.html
Copyright © 2011-2022 走看看