zoukankan      html  css  js  c++  java
  • 『科学计算』线性代数部分作业

    最小二乘法求解垂足

    from matplotlib import pyplot as plt
    import numpy as np
    from mpl_toolkits.mplot3d import Axes3D
    
    
    A=np.array([[1],[2],[3]])
    B=np.array([[1],[1],[1]])
    
    x=np.linspace(-0.5,1,10)
    
    x.shape=(1,10)
    xx=A.dot(x)
    
    C=A.T.dot(B)
    AA=np.linalg.inv(A.T.dot(A))
    
    P=A.dot(AA).dot(C)
    E=B-P
    
    
    fig = plt.figure() 
    ax = fig.add_subplot(111,projection='3d')
    
    ax.plot(xx[0,:],xx[1,:],xx[2,:],label="lineA")
    ax.plot(A[0],A[1],A[2],'ko',label="A")
    ax.plot([0,B[0]],[0,B[1]],[0,B[2]],'m-o',label="0B")
    ax.plot([B[0][0],P[0][0]],[B[1][0],P[1][0]],[B[2][0],P[2][0]],'r-o',label="BP")
    ax.plot([0,E[0]],[0,E[1]],[0,E[2]],'y-o',label="0E")
    
    ax.legend()
    ax.axis('equal')
    plt.show()
    

    因为是三维图么,所以扭了一下多截了一张(笑):

     最小二乘法拟合函数

    import numpy as np
    import matplotlib.pyplot as plt
    import copy
    
    # 产生一个方波(x,y)
    x = np.linspace(-10,10,300) 
    y=[]
    for i in np.cos(x):
        if i>0:
            y.append(0)
        else:
            y.append(2)
    y=np.array(y)
    
    def projection(A,b):
        ####
        # return A*inv(AT*A)*AT*b
        ####
        AA = A.T.dot(A)
        w=np.linalg.inv(AA).dot(A.T).dot(b)
        print(w)
        return A.dot(w)
    
    def fourier(x,y,N):
        A = []
        for i in x:
            A.append(copy.deepcopy([]))
            for j in range(N):
                A[-1].append(np.sin((j + 1) * i))
                A[-1].append(np.cos((j + 1) * i))
            A[-1].append(1)
        b = y.T
        yw = projection(np.array(A),b)
        return yw
    
    # write Your code, Fourier function    
    plt.plot(x,y,color='g',label='origin') 
    plt.plot(x,fourier(x,y,3),color='r',label='3')
    plt.plot(x,fourier(x,y,8),color='b',label='8')
    plt.plot(x,fourier(x,y,23),color='k',label='23')
    
    plt.legend()
    plt.axis('equal')
    plt.show()
    

    从输出图可以直观看出来项数越多拟合效果越好:

    使用动画模拟矩阵变换和特征值特征向量的关系

    import numpy as np
    import copy
    import matplotlib.pyplot as plt
    from matplotlib import animation
    
    A=np.array([[3,1],[2,4]])/4.0
    
    # write Your code
    fig = plt.figure()
    ax = fig.add_subplot(111)
    line1, = ax.plot([],[],c='r')
    line2, = ax.plot([],[],c='b')
    ax.axis('equal')
    ax.set_xlim(-2,2)
    ax.set_ylim(-2,2)
    ax.set_xticks(np.linspace(-2,2,5))
    ax.set_yticks(np.linspace(-2,2,5))
    ax.grid(True)
    
    def data():
        point_num = 100
        x = np.cos(np.linspace(0,2 * np.pi,point_num))
        y = np.sin(np.linspace(0,2 * np.pi,point_num))
        rot_x,rot_y = copy.deepcopy([]),copy.deepcopy([])
        int_x,int_y = copy.deepcopy([]),copy.deepcopy([])
        for i in range(point_num):
            rot_x.append(A.dot([x[i],y[i]])[0])
            rot_y.append(A.dot([x[i],y[i]])[1])
            int_x.append(x[i])
            int_y.append(y[i])
            yield (rot_x,rot_y,int_x,int_y)
    
    def update(data):
        line1.set_xdata(data[0])
        line1.set_ydata(data[1])
        line2.set_xdata(data[2])
        line2.set_ydata(data[3])
        return line1,line2
    
    def init():
        line1.set_data([],[])
        line2.set_data([],[])
        return line1,line2
    
    ani = animation.FuncAnimation(fig,update,data,init_func=init,interval=100,repeat=False)
    plt.show()
    

    这是个动画,所以我截了两张图来表示,可以看到同一变换矩阵对不同方向的单位向量放缩长度并不相同,是个椭圆形:

    使用矩阵求解差分方程(发散情况)

    import numpy as np
    import matplotlib.pyplot as plt  
    
    
    import time
    def time_cost(f):
        def _f(*arg, **kwarg):
            start = time.clock()
            a=f(*arg,**kwarg)
            end = time.clock()
            print(f.__name__,"run cost time is ",end-start)
            return a
        return _f
    
       
    @time_cost
    def fib_opt_seq(seq):
        return [fib_opt(i) for i in seq]
        
    def fib_opt(n):
        a,b,i=0,1,0
        
        while i<n:
            a,b=b,a+b
            i+=1
        else:
            #print(b)
            return b    
    
            
    import random
    #seq = [random.randint(800,1000) for i in xrange(1000)]
    seq = range(1000)
    a=fib_opt_seq(seq)
    
    # write Your code fib_eig_seq function
    A = np.array([[1,1],[1,0]])
    eigval,eigvect = np.linalg.eig(A)
    S_inv = np.linalg.inv(eigvect)
    
    @time_cost
    def fib_eig_seq(seq):
        return [fib_eig(i) for i in seq]
    
    
    def fib_eig(n):
        af = (np.diag(eigval)**(n+1)).dot(S_inv)
        #print((eigvect.dot(af)).dot(np.array([[1],[0]]))[1])
        return (eigvect.dot(af)).dot(np.array([[1],[0]]))[1]
    
    b=fib_eig_seq(seq)
    

     Python 3.5.2 |Anaconda 4.2.0 (64-bit)| (default, Jul  5 2016, 11:41:13) [MSC v.1900 64 bit (AMD64)]
    Type "copyright", "credits" or "license" for more information.
    IPython 5.1.0 -- An enhanced Interactive Python.
    ?         -> Introduction and overview of IPython's features.
    %quickref -> Quick reference.
    help      -> Python's own help system.
    object?   -> Details about 'object', use 'object??' for extra details.
    PyDev console: using IPython 5.1.0

    fib_opt_seq run cost time is  0.08637829184750435
    fib_eig_seq run cost time is  0.01634134003747284

    上面对比了传统的递归方式生成斐波那契数列方式,一般来说随着数量的上升,使用矩阵速度更快。

    使用矩阵求解差分方程(收敛情况)

    import numpy as np
    
    A = np.array([[ 0.8 ,  0.1],
                  [ 0.2 ,  0.9]])
    
    N_year = 1000
    
    x=np.array([3200,
                4000])
    
    def hw_3_5(a,x,n):
        eigval, eigvact = np.linalg.eig(a)
        res = (eigvact.dot((np.diag(eigval)**n).dot(np.linalg.inv(eigvact)).dot(x.T)))
        print(res)
        return res
    
    hw_3_5(A,x,N_year)
    

     IPython 5.1.0 -- An enhanced Interactive Python.
    ?         -> Introduction and overview of IPython's features.
    %quickref -> Quick reference.
    help      -> Python's own help system.
    object?   -> Details about 'object', use 'object??' for extra details.
    PyDev console: using IPython 5.1.0
    Running C:/Projects/python3_5/homework/hw_3-5_demo.py
    [ 2400.  4800.]

    虽然求解都类似,但是这是个收敛的差分方程,把100年换成1000年结果还是2400和4800。

     实践:使用PCA给Mnist图片降维

    再写程序的时候发现作业资料给的数据载入包并不能用(也许是python版本的问题),对debug不是很感兴趣,所以索性使用了tensorflow中提供的Mnist数据集调用方法了。

    思路有一点偏差,我看了答案,其原意是把N幅数据组成N*(28*28)的二维矩阵,对这个矩阵进行降维,然后在绘图时还原整个矩阵,再在矩阵中进行子图分割;我理解成把每幅小图独自降维保存了,不过除了使我的程序麻烦了一点之外没什么其他影响:

    import os
    import numpy as np
    import matplotlib.pyplot as plt  
    from tensorflow.examples.tutorials.mnist import input_data
    
    print(os.getcwd())
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
    
    batch_size = 10
    mnist = input_data.read_data_sets('../../Mnist_data/', one_hot=True)
    batch_xs,batch_ys = mnist.train.next_batch(batch_size)
    print(batch_xs.shape)
    
    # write Your code
    def pca(data,k=0.5):
        # data 原始的图片
        # k是保留特征值的百分比
        # return 返回降维后重建的图片
        res = np.empty_like(data).reshape(batch_size, 28, 28)
        rec = np.empty_like(res)
        data = data.reshape(batch_size, 28, 28)
        for i in range(batch_size):
            cov = np.cov(data[i])
            eigVal, eigVact = np.linalg.eig(cov)
            print(cov.shape, eigVal.shape, eigVact.shape)
            for j in range(len(eigVal) - 1):
                # print(sum(eigVal[:j]),sum(eigVal[:]),sum(eigVal[:j])/sum(eigVal[:]))
                if sum(eigVal[:j])/sum(eigVal[:]) > k:
                    print('提取前面',j, '个特征')
                    break
            # res[i] = eigVact[:,:j].T.dot(data[i].T)# np.dot(eigVact[:j],data[i].T)
            a = eigVact#[:,:j]
            b = data[i]
            print(a.shape,b.shape)
            res[i] = np.dot(b, a)
            rec[i] = np.dot(res[i],a.T)
        f,a = plt.subplots(2,batch_size,figsize=(10,2))
        for i in range(batch_size):
            a[0][i].imshow(data[i],'gray')
            a[0][i].set_xticks([])
            a[0][i].set_yticks([])
            a[1][i].imshow(rec[i].reshape(28,28),'gray')
            a[1][i].set_xticks([])
            a[1][i].set_yticks([])
    
    
    
    # N = 20
    recon_data = pca(batch_xs)
    # show_pic(data[:N,:],recon_data[:N,:])
    

    保留占比50%的特征值后压缩(上行是原图,下行是压缩后的图片):

    保留占比90%的特征值后压缩(上行是原图,下行是压缩后的图片):

    直观来看90%对50%似乎提升不大,不过查看90%和50%保留的特征个数就卡以发现,其实两者的特征数目相差不大,基本上都在5个以下(总数应该是28个左右),也就是说PCA压缩是有道理的——实际上图片的大量信息被保存在极少的几个特征上了。

  • 相关阅读:
    【robotframework】RequestLibrary的PUT/DELETE样例
    【转】Python PIP 升级到 20.2.3后 无法使用PyPI华为镜像
    【robotframework】Robot framework知识点&技能树思维导图
    【robotframework】使用RequestLibrary编写通过表单方式提交xlsx文件的测试用例
    【robotframework】Win10安装Robotframework
    【robotframework】RF几种编辑器比较
    shelve 用来持久化任意的Python对象
    通过华为开源镜像安装Python3
    Oracle常用命令大全(很有用,做笔记)
    内连接和外连接(转)(多种写法)
  • 原文地址:https://www.cnblogs.com/hellcat/p/7141421.html
Copyright © 2011-2022 走看看