zoukankan      html  css  js  c++  java
  • 『科学计算』层次聚类实现

    层次聚类理论自行百度,这里是一个按照我的理解的简单实现,

    我们先看看数据,

    啤酒名 热量 钠含量 酒精 价格
    Budweiser 144.00 19.00 4.70 .43
    Schlitz 181.00 19.00 4.90 .43
    Ionenbrau 157.00 15.00 4.90 .48
    Kronensourc 170.00 7.00 5.20 .73
    Heineken 152.00 11.00 5.00 .77
    Old-milnaukee 145.00 23.00 4.60 .26
    Aucsberger 175.00 24.00 5.50 .40
    Strchs-bohemi 149.00 27.00 4.70 .42
    Miller-lite 99.00 10.00 4.30 .43
    Sudeiser-lich 113.00 6.00 3.70 .44
    Coors 140.00 16.00 4.60 .44
    Coorslicht 102.00 15.00 4.10 .46
    Michelos-lich 135.00 11.00 4.20 .50
    Secrs 150.00 19.00 4.70 .76
    Kkirin 149.00 6.00 5.00 .79
    Pabst-extra-l 68.00 15.00 2.30 .36
    Hamms 136.00 19.00 4.40 .43
    Heilemans-old 144.00 24.00 4.90 .43
    Olympia-gold- 72.00 6.00 2.90 .46
    Schlite-light 97.00 7.00 4.20 .47

    程序如下,

    import numpy as np
    import pandas as pd
    
    data = pd.read_csv('./bear.txt', delim_whitespace=True)
    X = np.array(data.ix[:,1:])
    names = [[name] for name in data.ix[:,0]]
    
    def cluster_step(X,names):
        dis = np.empty([len(X),len(X)])
        for i in range(len(X)):
            for j in range(len(X)):
                dis[i][j] = np.sqrt(np.sum(np.square(X[i] - X[j])))
                if i == j:
                    dis[i][j] = 999
        x, y = [(np.argmin(dis))//len(X), np.mod(np.argmin(dis),len(X))]
        X[x] = (X[x] + X[y])/2
        X = np.delete(X, y, axis=0)
        names[x].extend(names[y])
        names.remove(names[y])
        return x, y, X, names, dis
    
    def cluster(X, num, names):
        classes = len(X)
        while classes != num:
            _x, _y, X, names, _dis = cluster_step(X, names)
            with open('./result.txt', 'a') as f:
                f.write('
    '+str(_x))
                f.write('
    '+str(_y))
                f.write('
    ' + str(_dis[_x,_y]))
                f.write('
    '+str(_dis))
                f.write('
    '+str(names))
                f.flush()
            classes -= 1
        return names
    
    if __name__=='__main__':
        names = cluster(X, 4, names)

    规则是每次合并后去中心点(每一步会合并两个位置,取均值做新位置)作为类簇位置,距离使用的是欧式距离。

    实际上由于每次合并后下一次的节点会减少,和最初的20个点就对不上了,头疼了好一会,后来想到在每一次迭代中把每一个种类名按照类去合并,这样就不需要在最后利用索引去复原啤酒种类了,感觉挺机智。由于这样直接说不直观,我下面给出中间输出,

    [['Budweiser'], ['Schlitz'], ['Ionenbrau'], ['Kronensourc'], ['Heineken'], ['Old-milnaukee', 'Heilemans-old'], ['Aucsberger'], ['Strchs-bohemi'], ['Miller-lite'], ['Sudeiser-lich'], ['Coors'], ['Coorslicht'], ['Michelos-lich'], ['Secrs'], ['Kkirin'], ['Pabst-extra-l'], ['Hamms'], ['Olympia-gold-'], ['Schlite-light']]

    [['Budweiser'], ['Schlitz'], ['Ionenbrau'], ['Kronensourc'], ['Heineken'], ['Old-milnaukee', 'Heilemans-old'], ['Aucsberger'], ['Strchs-bohemi'], ['Miller-lite', 'Schlite-light'], ['Sudeiser-lich'], ['Coors'], ['Coorslicht'], ['Michelos-lich'], ['Secrs'], ['Kkirin'], ['Pabst-extra-l'], ['Hamms'], ['Olympia-gold-']]

    [['Budweiser', 'Old-milnaukee', 'Heilemans-old'], ['Schlitz'], ['Ionenbrau'], ['Kronensourc'], ['Heineken'], ['Aucsberger'], ['Strchs-bohemi'], ['Miller-lite', 'Schlite-light'], ['Sudeiser-lich'], ['Coors'], ['Coorslicht'], ['Michelos-lich'], ['Secrs'], ['Kkirin'], ['Pabst-extra-l'], ['Hamms'], ['Olympia-gold-']]

    [['Budweiser', 'Old-milnaukee', 'Heilemans-old'], ['Schlitz'], ['Ionenbrau'], ['Kronensourc'], ['Heineken'], ['Aucsberger'], ['Strchs-bohemi'], ['Miller-lite', 'Schlite-light'], ['Sudeiser-lich'], ['Coors', 'Hamms'], ['Coorslicht'], ['Michelos-lich'], ['Secrs'], ['Kkirin'], ['Pabst-extra-l'], ['Olympia-gold-']]

    ... ... ...

    每次list长度减少1,某个子list长度加一这样

     

    查看一下输出,

    names
    Out[1]:
    [['Budweiser',
    'Old-milnaukee',
    'Heilemans-old',
    'Secrs',
    'Strchs-bohemi',
    'Ionenbrau',
    'Heineken',
    'Kkirin',
    'Coors',
    'Hamms',
    'Michelos-lich'],
    ['Schlitz', 'Aucsberger', 'Kronensourc'],
    ['Miller-lite', 'Schlite-light', 'Coorslicht', 'Sudeiser-lich'],
    ['Pabst-extra-l', 'Olympia-gold-']]

  • 相关阅读:
    POJ 1466 Girls and Boys 黑白染色 + 二分匹配 (最大独立集) 好题
    POJ2226 Muddy Fields 二分匹配 最小顶点覆盖 好题
    POJ 2195 Going Home 最小费用流 裸题
    POJ 3368 Frequent values RMQ 训练指南 好题
    POJ 3187 杨辉三角+枚举排列 好题
    POJ 2393 贪心 简单题
    系统监控
    系统的初始化和服务
    vi与vim
    正文处理命令及tar命令
  • 原文地址:https://www.cnblogs.com/hellcat/p/7612303.html
Copyright © 2011-2022 走看看