zoukankan      html  css  js  c++  java
  • 『MXNet』第九弹_分类器以及迁移学习DEMO

    解压文件命令:

    with zipfile.ZipFile('../data/kaggle_cifar10/' + fin, 'r') as zin:
                zin.extractall('../data/kaggle_cifar10/')

    拷贝文件命令:

    shutil.copy(原文件, 目标文件)

    一、整理数据

    我们有两个文件夹'../data/kaggle_cifar10/train'和'../data/kaggle_cifar10/test',一个记录了文件名和类别的索引文件

    我们的目的是在新的文件夹下形成拷贝,包含三个文件夹train_valid、train、valid,每个文件夹下存放不同的类别文件夹,里面存放对应类别的图片,

    import os
    import shutil
    
    def reorg_cifar10_data(data_dir, label_file, train_dir, test_dir, input_dir, valid_ratio):
        """
        处理之后,新建三个文件夹存放数据,train_valid、train、valid
        data_dir:'../data/kaggle_cifar10'
        label_file:'trainLabels.csv'
        train_dir = 'train'
        test_dir = 'test'
        input_dir = 'train_valid_test'
        valid_ratio = 0.1
        """
        # 读取训练数据标签。
        # 打开csv索引:'../data/kaggle_cifar10/trainLabels.csv'
        with open(os.path.join(data_dir, label_file), 'r') as f:
            # 跳过文件头行(栏名称)。
            lines = f.readlines()[1:]
            tokens = [l.rstrip().split(',') for l in lines]
            # {索引:标签}
            idx_label = dict(((int(idx), label) for idx, label in tokens))
        # 标签集合
        labels = set(idx_label.values())
        # 训练数据数目:'../data/kaggle_cifar10/train'
        num_train = len(os.listdir(os.path.join(data_dir, train_dir)))
        # train数目(对应valid)
        num_train_tuning = int(num_train * (1 - valid_ratio))
        # <---异常检测
        assert 0 < num_train_tuning < num_train
        # 每个label的train数据条目
        num_train_tuning_per_label = num_train_tuning // len(labels)
        label_count = dict()
    
        def mkdir_if_not_exist(path):
            if not os.path.exists(os.path.join(*path)):
                os.makedirs(os.path.join(*path))
    
        # 整理训练和验证集。
        # 循环训练数据图片 '../data/kaggle_cifar10/train'
        for train_file in os.listdir(os.path.join(data_dir, train_dir)):
            # 去掉扩展名作为索引
            idx = int(train_file.split('.')[0])
            # 索引到标签
            label = idx_label[idx]
            
            # '../data/kaggle_cifar10/train_valid_test/train_valid' +  标签名称
            mkdir_if_not_exist([data_dir, input_dir, 'train_valid', label])
            # 拷贝图片
            shutil.copy(os.path.join(data_dir, train_dir, train_file),
                        os.path.join(data_dir, input_dir, 'train_valid', label))
            
            # 保证train文件夹下的每类标签训练数目足够后,分给valid文件夹
            if label not in label_count or label_count[label] < num_train_tuning_per_label:
                # '../data/kaggle_cifar10/train_valid_test/train' +  标签名称
                mkdir_if_not_exist([data_dir, input_dir, 'train', label])
                shutil.copy(os.path.join(data_dir, train_dir, train_file),
                            os.path.join(data_dir, input_dir, 'train', label))
                label_count[label] = label_count.get(label, 0) + 1
            else:
                mkdir_if_not_exist([data_dir, input_dir, 'valid', label])
                shutil.copy(os.path.join(data_dir, train_dir, train_file),
                            os.path.join(data_dir, input_dir, 'valid', label))
    
        # 整理测试集
        # '../data/kaggle_cifar10/train_valid_test/test/unknown' 里面存放test图片
        mkdir_if_not_exist([data_dir, input_dir, 'test', 'unknown'])
        for test_file in os.listdir(os.path.join(data_dir, test_dir)):
            shutil.copy(os.path.join(data_dir, test_dir, test_file),
                        os.path.join(data_dir, input_dir, 'test', 'unknown'))
    
    train_dir = 'train'
    test_dir = 'test'
    batch_size = 128
    
    data_dir = '../data/kaggle_cifar10'
    label_file = 'trainLabels.csv'
    input_dir = 'train_valid_test'
    valid_ratio = 0.1
    reorg_cifar10_data(data_dir, label_file, train_dir, test_dir, input_dir, valid_ratio)

    二、数据预处理

    # 预处理
    from mxnet import autograd
    from mxnet import gluon
    from mxnet import init
    from mxnet import nd
    from mxnet.gluon.data import vision
    from mxnet.gluon.data.vision import transforms
    import numpy as np
    
    transform_train = transforms.Compose([
        # transforms.CenterCrop(32)
        # transforms.RandomFlipTopBottom(),
        # transforms.RandomColorJitter(brightness=0.0, contrast=0.0, saturation=0.0, hue=0.0),
        # transforms.RandomLighting(0.0),
        # transforms.Cast('float32'),
        # transforms.Resize(32),
    
        # 随机按照scale和ratio裁剪,并放缩为32x32的正方形
        transforms.RandomResizedCrop(32, scale=(0.08, 1.0), ratio=(3.0/4.0, 4.0/3.0)),
        # 随机左右翻转图片
        transforms.RandomFlipLeftRight(),
        # 将图片像素值缩小到(0,1)内,并将数据格式从"高*宽*通道"改为"通道*高*宽"
        transforms.ToTensor(),
        # 对图片的每个通道做标准化
        transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])
    ])
    
    # 测试时,无需对图像做标准化以外的增强数据处理。
    transform_test = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010])
    ])
    
    
    # '../data/kaggle_cifar10、train_valid_test/'
    input_str = data_dir + '/' + input_dir + '/'
    
    # 读取原始图像文件。flag=1说明输入图像有三个通道(彩色)。
    train_ds = vision.ImageFolderDataset(input_str + 'train', flag=1)
    valid_ds = vision.ImageFolderDataset(input_str + 'valid', flag=1)
    train_valid_ds = vision.ImageFolderDataset(input_str + 'train_valid', flag=1)
    test_ds = vision.ImageFolderDataset(input_str + 'test', flag=1)
    
    loader = gluon.data.DataLoader
    train_data = loader(train_ds.transform_first(transform_train),
    batch_size, shuffle=True, last_batch='keep')
    valid_data = loader(valid_ds.transform_first(transform_test),
    batch_size, shuffle=True, last_batch='keep')
    train_valid_data = loader(train_valid_ds.transform_first(transform_train),
    batch_size, shuffle=True, last_batch='keep')
    test_data = loader(test_ds.transform_first(transform_test),
    batch_size, shuffle=False, last_batch='keep')
    
    # 交叉熵损失函数。
    softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()
    

    mxnet.gluon.vision.ImageFolderDataset
    mxnet.gluon.data.DataLoader

    数据的预处理放在DataLoader中,这样后面可以调用ImageFolderDataset,获取原始图片集

    至此,数据准备完成。

    三、模型定义

    1、新的ResNet

    from mxnet.gluon import nn
    from mxnet import nd
    
    class Residual(nn.HybridBlock):
        def __init__(self, channels, same_shape=True, **kwargs):
            super(Residual, self).__init__(**kwargs)
            self.same_shape = same_shape
            with self.name_scope():
                strides = 1 if same_shape else 2
                self.conv1 = nn.Conv2D(channels, kernel_size=3, padding=1,
                                      strides=strides)
                self.bn1 = nn.BatchNorm()
                self.conv2 = nn.Conv2D(channels, kernel_size=3, padding=1)
                self.bn2 = nn.BatchNorm()
                if not same_shape:
                    self.conv3 = nn.Conv2D(channels, kernel_size=1,
                                          strides=strides)
    
        def hybrid_forward(self, F, x):
            out = F.relu(self.bn1(self.conv1(x)))
            out = self.bn2(self.conv2(out))
            if not self.same_shape:
                x = self.conv3(x)
            return F.relu(out + x)
    
    
    class ResNet(nn.HybridBlock):
        def __init__(self, num_classes, verbose=False, **kwargs):
            super(ResNet, self).__init__(**kwargs)
            self.verbose = verbose
            with self.name_scope():
                net = self.net = nn.HybridSequential()
                # 模块1
                net.add(nn.Conv2D(channels=32, kernel_size=3, strides=1, padding=1))
                net.add(nn.BatchNorm())
                net.add(nn.Activation(activation='relu'))
                # 模块2
                for _ in range(3):
                    net.add(Residual(channels=32))
                # 模块3
                net.add(Residual(channels=64, same_shape=False))
                for _ in range(2):
                    net.add(Residual(channels=64))
                # 模块4
                net.add(Residual(channels=128, same_shape=False))
                for _ in range(2):
                    net.add(Residual(channels=128))
                # 模块5
                net.add(nn.AvgPool2D(pool_size=8))
                net.add(nn.Flatten())
                net.add(nn.Dense(num_classes))
    
        def hybrid_forward(self, F, x):
            out = x
            for i, b in enumerate(self.net):
                out = b(out)
                if self.verbose:
                    print('Block %d output: %s'%(i+1, out.shape))
            return out
    
    
    def get_net(ctx):
        num_outputs = 10
        net = ResNet(num_outputs)
        net.initialize(ctx=ctx, init=init.Xavier())
        return net

    2、迁移学习ResNet

    mxnet.gluon.model_zoo中有预训练好的model
    通常预训练好的模型由两块构成,一是features,二是output。后者主要包括最后一层全连接层,前者包含从输入开始的大部分层。这样的划分的一个主要目的是为了更方便做微调。

    from mxnet.gluon.model_zoo import vision as models
    
    
    pretrained_net = models.resnet18_v2(pretrained=True)
    finetune_net = models.resnet18_v2(classes=10)
    finetune_net.features = pretrained_net.features
    finetune_net.output.initialize(init.Xavier())
    

    迁移学习网络定义补充说明

    尝试使用class定义迁移学习网络,

    # 迁移学习

    from mxnet.gluon import nn
    from mxnet.gluon.model_zoo import vision as models

    class ResNet(nn.HybridBlock):
        def __init__(self, num_classes, verbose=False, **kwargs):
            super(ResNet, self).__init__(**kwargs)
            # 获取pretrained=True的模型
            pretrained_net = models.resnet18_v2(pretrained=True)
            # 获取空模型,分类数目为10
            finetune_net = models.resnet18_v2(classes=num_classes)
            self.net = nn.HybridSequential()
            self.net.add(pretrained_net.features)
            self.net.add(finetune_net.output)
            
        def hybrid_forward(self, F, x):
            out = self.net(x)
            return out


            
    def get_net(ctx):
        num_outputs = 10
        net = ResNet(num_outputs)
        # print(net)
        net.net[-1].initialize(init.Xavier())
        net.collect_params().reset_ctx(ctx)
        return net

    有几个小总结,

    1,实际上class ResNet类包含.net属性,这个属性本身是一个HybridSequential,也就是说和python其他类没什么不同

    2,初始化时如果不使用net[-1](表示finetune_net.output层),会warning参数已经初始化,问我们是否强制初始化,这也就是因为pretrained_net已经训练过的原因

    3,鉴于上面的class和属性关系,对于其他有子结构的网络class,其实都可以这样区分,例如model_zoo里网络的features结构和output结构的索引获取

    4,补充2,实际上参数初始化是以每一个Parameter对象为单位,记录层、模型初始化与否也是参数本身在记录,警报实际上也是一个参数一条而非一层一条

    四、训练

    gb.accuracy(output, label)

    trainer.set_learning_rate(trainer.learning_rate * lr_decay)

    gb.evaluate_accuracy(valid_data, net, ctx)

    import datetime
    import sys
    sys.path.append('..')
    import gluonbook as gb
    
    def train(net, train_data, valid_data, num_epochs, lr, wd, ctx, lr_period, lr_decay):
        trainer = gluon.Trainer(
            net.collect_params(), 'sgd', {'learning_rate': lr, 'momentum': 0.9, 'wd': wd})
    
        prev_time = datetime.datetime.now()
        for epoch in range(num_epochs):
            train_loss = 0.0
            train_acc = 0.0
            if epoch > 0 and epoch % lr_period == 0:
                trainer.set_learning_rate(trainer.learning_rate * lr_decay)
            for data, label in train_data:
                label = label.astype('float32').as_in_context(ctx)
                with autograd.record():
                    output = net(data.as_in_context(ctx))
                    loss = softmax_cross_entropy(output, label)
                loss.backward()
                trainer.step(batch_size)
                train_loss += nd.mean(loss).asscalar()
                train_acc += gb.accuracy(output, label)
            cur_time = datetime.datetime.now()
            h, remainder = divmod((cur_time - prev_time).seconds, 3600)
            m, s = divmod(remainder, 60)
            time_str = "Time %02d:%02d:%02d" % (h, m, s)
            if valid_data is not None:
                valid_acc = gb.evaluate_accuracy(valid_data, net, ctx)
                epoch_str = ("Epoch %d. Loss: %f, Train acc %f, Valid acc %f, "
                             % (epoch, train_loss / len(train_data),
                                train_acc / len(train_data), valid_acc))
            else:
                epoch_str = ("Epoch %d. Loss: %f, Train acc %f, "
                             % (epoch, train_loss / len(train_data),
                                train_acc / len(train_data)))
            prev_time = cur_time
            print(epoch_str + time_str + ', lr ' + str(trainer.learning_rate))  

    实际训练起来,

    ctx = gb.try_gpu()
    num_epochs = 1
    learning_rate = 0.1
    weight_decay = 5e-4
    lr_period = 80
    lr_decay = 0.1
    
    finetune = False
    if finetune:
        finetune_net.collect_params().reset_ctx(ctx)
        finetune_net.hybridize()
        net = finetune_net
    else:
        net = get_net(ctx)
        net.hybridize()
    
    train(net, train_data, valid_data, num_epochs, learning_rate,
          weight_decay, ctx, lr_period, lr_decay)
    

    五、预测

    import numpy as np
    import pandas as pd
    
    # 训练
    net = get_net(ctx)
    net.hybridize()
    train(net, train_valid_data, None, num_epochs, learning_rate,
          weight_decay, ctx, lr_period, lr_decay)
    
    # 预测
    preds = []
    for data, label in test_data:
        output = net(data.as_in_context(ctx))
        preds.extend(output.argmax(axis=1).astype(int).asnumpy())
    
    
    sorted_ids = list(range(1, len(test_ds) + 1))
    sorted_ids.sort(key = lambda x:str(x))
    
    df = pd.DataFrame({'id': sorted_ids, 'label': preds})
    df['label'] = df['label'].apply(lambda x: train_valid_ds.synsets[x])
    df.to_csv('submission.csv', index=False)
    
  • 相关阅读:
    配置和兼容性测试的区别是什么?
    7 天内免登陆,测试要怎么去测试?
    在测试“支付网关”过程中的5个要点
    Hibernate入门与简谈
    jQuery专题
    Java反射机制专题
    Java IO流
    EL和JSTL专题
    泛型(Generic)
    Java异常处理
  • 原文地址:https://www.cnblogs.com/hellcat/p/9098168.html
Copyright © 2011-2022 走看看