zoukankan      html  css  js  c++  java
  • 『TensorFlow』分布式训练_其二_单机多GPU并行&GPU模式设定

    建议比对『MXNet』第七弹_多GPU并行程序设计

    一、tensorflow GPU设置

    GPU指定占用

    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.7)
    sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))   
    

    上面分配给tensorflow的GPU显存大小为:GPU实际显存*0.7。

    GPU模式禁用

    import os 
    os.environ["CUDA_VISIBLE_DEVICES"]="-1"  
    

    GPU资源申请规则

    # 设置 GPU 按需增长
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)
    

    二、单机多GPU工作原理

    以一篇csdn博客(出处见水印)上的图说明多GPU工作原理:

    想让 TensorFlow 在多个 GPU 上运行, 需要建立 multi-tower 结构, 在这个结构里每个 tower 分别被指配给不同的 GPU 运行,汇总工作一般交由CPU完成,示意如下,

    # 新建一个 graph.
    c = []
    for d in ['/gpu:2', '/gpu:3']:
      with tf.device(d):
        a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3])
        b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2])
        c.append(tf.matmul(a, b))
    with tf.device('/cpu:0'):
      sum = tf.add_n(c)
    # 新建session with log_device_placement并设置为True.
    sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
    # 运行这个op.
    print sess.run(sum) 
    

    三、官方demo

    多GPU分布+LR衰减+滑动平均

    和MXNet不同,由于TensorFlow使用上下文指定设备,所以数据无需显示的拷贝到指定设备,在目标设备上下文中获取即可(需要调用对应节点于该设备下,如下文中的出队节点)

    另一个值得注意的点在于收集来的梯度格式为List of lists of (gradient, variable) tuples,我们计算后返回的是List of (gradient, variable) tuples,variable随便指定一组gpu上的即可,这是因为和MXNet不同,MXNet是得到grad平均值后分发给各个GPU各自更新,TensorFlow实际是各个GPU使用同一套参数(tf.get_variable_scope().reuse_variables()),虽然会被拷贝到各个设备,但是彼此之间是有逻辑关系的,是共享参数,简化示意如下:

    #将神经网络的优化过程跑在不同的GPU上
    for i in range(N_GPU):
        with tf.debice('/gpu:%d'%i)
            with tf.name_scope('GPU_%d'%i) as scope:
                cur_loss = get_loss(x,y_regularizer,scope)
                #tf.get_variable的命名空间
                tf.get_variable_scope().reuse_variables()
                #使用当前gpu计算所有变量的梯度
                grads= opt.compute_gradients(cur_loss)
                tower_grads.append(grads)
    #计算变量的平均梯度
    grads = average_gradients(tower_grads)
    #使用平均梯度更新参数
    apply_gradient_op = opt.apply_gradients(grads,global_step = global)

    models/tutorials/image/cifar10/cifer10_multi_gpu-train.py

    # Copyright 2015 The TensorFlow Authors. All Rights Reserved.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #     http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    # ==============================================================================
     
    """A binary to train CIFAR-10 using multiple GPUs with synchronous updates.
    Accuracy:
    cifar10_multi_gpu_train.py achieves ~86% accuracy after 100K steps (256
    epochs of data) as judged by cifar10_eval.py.
    Speed: With batch_size 128.
    System        | Step Time (sec/batch)  |     Accuracy
    --------------------------------------------------------------------
    1 Tesla K20m  | 0.35-0.60              | ~86% at 60K steps  (5 hours)
    1 Tesla K40m  | 0.25-0.35              | ~86% at 100K steps (4 hours)
    2 Tesla K20m  | 0.13-0.20              | ~84% at 30K steps  (2.5 hours)
    3 Tesla K20m  | 0.13-0.18              | ~84% at 30K steps
    4 Tesla K20m  | ~0.10                  | ~84% at 30K steps
    Usage:
    Please see the tutorial and website for how to download the CIFAR-10
    data set, compile the program and train the model.
    http://tensorflow.org/tutorials/deep_cnn/
    """
    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
     
    from datetime import datetime
    import os.path
    import re
    import time
     
    import numpy as np
    from six.moves import xrange  # pylint: disable=redefined-builtin
    import tensorflow as tf
    import cifar10
     
    FLAGS = tf.app.flags.FLAGS
     
    tf.app.flags.DEFINE_string('train_dir', '/tmp/cifar10_train',
                               """Directory where to write event logs """
                               """and checkpoint.""")
    tf.app.flags.DEFINE_integer('max_steps', 1000000,
                                """Number of batches to run.""")
    tf.app.flags.DEFINE_integer('num_gpus', 1,
                                """How many GPUs to use.""")
    tf.app.flags.DEFINE_boolean('log_device_placement', False,
                                """Whether to log device placement.""")
     
     
    def tower_loss(scope, images, labels):
      """Calculate the total loss on a single tower running the CIFAR model.
      Args:
        scope: unique prefix string identifying the CIFAR tower, e.g. 'tower_0'
        images: Images. 4D tensor of shape [batch_size, height, width, 3].
        labels: Labels. 1D tensor of shape [batch_size].
      Returns:
         Tensor of shape [] containing the total loss for a batch of data
      """
     
      # Build inference Graph.
      logits = cifar10.inference(images)
     
      # Build the portion of the Graph calculating the losses. Note that we will
      # assemble the total_loss using a custom function below.
      _ = cifar10.loss(logits, labels)
     
      # Assemble all of the losses for the current tower only.
      losses = tf.get_collection('losses', scope)
     
      # Calculate the total loss for the current tower.
      total_loss = tf.add_n(losses, name='total_loss')
     
      # Attach a scalar summary to all individual losses and the total loss; do the
      # same for the averaged version of the losses.
      for l in losses + [total_loss]:
        # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
        # session. This helps the clarity of presentation on tensorboard.
        loss_name = re.sub('%s_[0-9]*/' % cifar10.TOWER_NAME, '', l.op.name)
        tf.summary.scalar(loss_name, l)
     
      return total_loss
     
     
    def average_gradients(tower_grads):
      """Calculate the average gradient for each shared variable across all towers.
      Note that this function provides a synchronization point across all towers.
      Args:
        tower_grads: List of lists of (gradient, variable) tuples. The outer list
          is over individual gradients. The inner list is over the gradient
          calculation for each tower.
      Returns:
         List of pairs of (gradient, variable) where the gradient has been averaged
         across all towers.
      """
      average_grads = []
      for grad_and_vars in zip(*tower_grads):
        # Note that each grad_and_vars looks like the following:
        #   ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
        grads = []
        for g, _ in grad_and_vars:
          # Add 0 dimension to the gradients to represent the tower.
          expanded_g = tf.expand_dims(g, 0)
     
          # Append on a 'tower' dimension which we will average over below.
          grads.append(expanded_g)
     
        # Average over the 'tower' dimension.
        grad = tf.concat(axis=0, values=grads)
        grad = tf.reduce_mean(grad, 0)
     
        # Keep in mind that the Variables are redundant because they are shared
        # across towers. So .. we will just return the first tower's pointer to
        # the Variable.
        v = grad_and_vars[0][1]
        grad_and_var = (grad, v)
        average_grads.append(grad_and_var)
      return average_grads
     
     
    def train():
      """Train CIFAR-10 for a number of steps."""
      with tf.Graph().as_default(), tf.device('/cpu:0'):
        # Create a variable to count the number of train() calls. This equals the
        # number of batches processed * FLAGS.num_gpus.
        global_step = tf.get_variable(
            'global_step', [],
            initializer=tf.constant_initializer(0), trainable=False)
     
        # Calculate the learning rate schedule.
        num_batches_per_epoch = (cifar10.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN /
                                 FLAGS.batch_size)
        decay_steps = int(num_batches_per_epoch * cifar10.NUM_EPOCHS_PER_DECAY)
     
        # Decay the learning rate exponentially based on the number of steps.
        lr = tf.train.exponential_decay(cifar10.INITIAL_LEARNING_RATE,
                                        global_step,
                                        decay_steps,
                                        cifar10.LEARNING_RATE_DECAY_FACTOR,
                                        staircase=True)
     
        # Create an optimizer that performs gradient descent.
        opt = tf.train.GradientDescentOptimizer(lr)
     
        # Get images and labels for CIFAR-10.
        images, labels = cifar10.distorted_inputs()
        batch_queue = tf.contrib.slim.prefetch_queue.prefetch_queue(
              [images, labels], capacity=2 * FLAGS.num_gpus)
        # Calculate the gradients for each model tower.
        tower_grads = []
        with tf.variable_scope(tf.get_variable_scope()):
          for i in xrange(FLAGS.num_gpus):
            with tf.device('/gpu:%d' % i):
              with tf.name_scope('%s_%d' % (cifar10.TOWER_NAME, i)) as scope:
                # Dequeues one batch for the GPU
                image_batch, label_batch = batch_queue.dequeue()
                # Calculate the loss for one tower of the CIFAR model. This function
                # constructs the entire CIFAR model but shares the variables across
                # all towers.
                loss = tower_loss(scope, image_batch, label_batch)
     
                # Reuse variables for the next tower.
                tf.get_variable_scope().reuse_variables()
     
                # Retain the summaries from the final tower.
                summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)
     
                # Calculate the gradients for the batch of data on this CIFAR tower.
                grads = opt.compute_gradients(loss)
     
                # Keep track of the gradients across all towers.
                tower_grads.append(grads)
     
        # We must calculate the mean of each gradient. Note that this is the
        # synchronization point across all towers.
        grads = average_gradients(tower_grads)
     
        # Add a summary to track the learning rate.
        summaries.append(tf.summary.scalar('learning_rate', lr))
     
        # Add histograms for gradients.
        for grad, var in grads:
          if grad is not None:
            summaries.append(tf.summary.histogram(var.op.name + '/gradients', grad))
     
        # Apply the gradients to adjust the shared variables.
        apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
     
        # Add histograms for trainable variables.
        for var in tf.trainable_variables():
          summaries.append(tf.summary.histogram(var.op.name, var))
     
        # Track the moving averages of all trainable variables.
        variable_averages = tf.train.ExponentialMovingAverage(
            cifar10.MOVING_AVERAGE_DECAY, global_step)
        variables_averages_op = variable_averages.apply(tf.trainable_variables())
     
        # Group all updates to into a single train op.
        train_op = tf.group(apply_gradient_op, variables_averages_op)
     
        # Create a saver.
        saver = tf.train.Saver(tf.global_variables())
     
        # Build the summary operation from the last tower summaries.
        summary_op = tf.summary.merge(summaries)
    ################################################################################
        # Build an initialization operation to run below.
        init = tf.global_variables_initializer()
     
        # Start running operations on the Graph. allow_soft_placement must be set to
        # True to build towers on GPU, as some of the ops do not have GPU
        # implementations.
        sess = tf.Session(config=tf.ConfigProto(
            allow_soft_placement=True,
            log_device_placement=FLAGS.log_device_placement))
        sess.run(init)
     
        # Start the queue runners.
        tf.train.start_queue_runners(sess=sess)
     
        summary_writer = tf.summary.FileWriter(FLAGS.train_dir, sess.graph)
     
        for step in xrange(FLAGS.max_steps):
          start_time = time.time()
          _, loss_value = sess.run([train_op, loss])
          duration = time.time() - start_time
     
          assert not np.isnan(loss_value), 'Model diverged with loss = NaN'
     
          if step % 10 == 0:
            num_examples_per_step = FLAGS.batch_size * FLAGS.num_gpus
            examples_per_sec = num_examples_per_step / duration
            sec_per_batch = duration / FLAGS.num_gpus
     
            format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
                          'sec/batch)')
            print (format_str % (datetime.now(), step, loss_value,
                                 examples_per_sec, sec_per_batch))
     
          if step % 100 == 0:
            summary_str = sess.run(summary_op)
            summary_writer.add_summary(summary_str, step)
     
          # Save the model checkpoint periodically.
          if step % 1000 == 0 or (step + 1) == FLAGS.max_steps:
            checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
            saver.save(sess, checkpoint_path, global_step=step)
     
     
    def main(argv=None):  # pylint: disable=unused-argument
      cifar10.maybe_download_and_extract()
      if tf.gfile.Exists(FLAGS.train_dir):
        tf.gfile.DeleteRecursively(FLAGS.train_dir)
      tf.gfile.MakeDirs(FLAGS.train_dir)
      train()
     
     
    if __name__ == '__main__':
      tf.app.run()
    

    数据输入函数如下,

    def distorted_inputs():
      """Construct distorted input for CIFAR training using the Reader ops.
      Returns:
        images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
        labels: Labels. 1D tensor of [batch_size] size.
      Raises:
        ValueError: If no data_dir
      """
      if not FLAGS.data_dir:
        raise ValueError('Please supply a data_dir')
      data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-bin')
      images, labels = cifar10_input.distorted_inputs(data_dir=data_dir,
                                                      batch_size=FLAGS.batch_size)
      if FLAGS.use_fp16:
        images = tf.cast(images, tf.float16)
        labels = tf.cast(labels, tf.float16)
    return images, labels
    

    tf.contrib.slim.prefetch_queue.prefetch_queue从介绍来看就是个输入数据队列

    Signature: tf.contrib.slim.prefetch_queue.prefetch_queue(tensors, capacity=8, num_threads=1, dynamic_pad=False, shared_name=None, name=None)
    Docstring:
    Creates a queue to prefetech tensors from `tensors`.
    
    A queue runner for enqueing tensors into the prefetch_queue is automatically
    added to the TF QueueRunners collection.
    
    Example:
    This is for example useful to pre-assemble input batches read with
    `tf.train.batch()` and enqueue the pre-assembled batches.  Ops that dequeue
    from the pre-assembled queue will not pay the cost of assembling the batch.
    
    images, labels = tf.train.batch([image, label], batch_size=32, num_threads=4)
    batch_queue = prefetch_queue([images, labels])
    images, labels = batch_queue.dequeue()
    logits = Net(images)
    loss = Loss(logits, labels)
    
    Args:
      tensors: A list or dictionary of `Tensors` to enqueue in the buffer.
      capacity: An integer. The maximum number of elements in the queue.
      num_threads: An integer.  Number of threads running the enqueue op.
      dynamic_pad: Boolean.  Whether to allow variable dimensions in input shapes.
      shared_name: (optional). If set, this queue will be shared under the given
        name across multiple sessions.
      name: (Optional) A name for the operations.
    
    Returns:
      A queue from which you can dequeue tensors with the same type and shape
      as `tensors`.
  • 相关阅读:
    仙人球的残影
    Calculate the formula
    自定义代码段
    getter-setter方法练习
    封装
    Xcode文档安装
    Xcode模板修改
    匿名对象
    OC多文件开发介绍
    #pragma mark指令
  • 原文地址:https://www.cnblogs.com/hellcat/p/9194110.html
Copyright © 2011-2022 走看看