zoukankan      html  css  js  c++  java
  • 『计算机视觉』Mask-RCNN_推断网络其三:RPN锚框处理和Proposal生成

    一、RPN锚框信息生成

    上文的最后,我们生成了用于计算锚框信息的特征(源代码在inference模式中不进行锚框生成,而是外部生成好feed进网络,training模式下在向前传播时直接生成锚框,不过实际上没什么区别,锚框生成的讲解见『计算机视觉』Mask-RCNN_锚框生成):

        rpn_feature_maps = [P2, P3, P4, P5, P6]
    

    接下来,我们基于上述特征首先生成锚框的信息,包含每个锚框的前景/背景得分信息及每个锚框的坐标修正信息

    接前文主函数,我们初始化rpn model class的对象,并应用于各层特征:

            # Anchors
            if mode == "training":
                ……
            else:
                anchors = input_anchors
    
            # RPN Model, 返回的是keras的Module对象, 注意keras中的Module对象是可call的
            rpn = build_rpn_model(config.RPN_ANCHOR_STRIDE,  # 1 3 256
                                  len(config.RPN_ANCHOR_RATIOS), config.TOP_DOWN_PYRAMID_SIZE)
            # Loop through pyramid layers
            layer_outputs = []  # list of lists
            for p in rpn_feature_maps:
                layer_outputs.append(rpn([p]))  # 保存各pyramid特征经过RPN之后的结果
    

    具体的RPN模块调用函数栈如下,

    ############################################################
    #  Region Proposal Network (RPN)
    ############################################################
    
    def rpn_graph(feature_map, anchors_per_location, anchor_stride):
        """Builds the computation graph of Region Proposal Network.
    
        feature_map: backbone features [batch, height, width, depth]
        anchors_per_location: number of anchors per pixel in the feature map
        anchor_stride: Controls the density of anchors. Typically 1 (anchors for
                       every pixel in the feature map), or 2 (every other pixel).
    
        Returns:
            rpn_class_logits: [batch, H * W * anchors_per_location, 2] Anchor classifier logits (before softmax)
            rpn_probs: [batch, H * W * anchors_per_location, 2] Anchor classifier probabilities.
            rpn_bbox: [batch, H * W * anchors_per_location, (dy, dx, log(dh), log(dw))] Deltas to be
                      applied to anchors.
        """
        # TODO: check if stride of 2 causes alignment(校准,对齐) issues if the feature map
        # is not even.
        # Shared convolutional base of the RPN
        shared = KL.Conv2D(512, (3, 3), padding='same', activation='relu',
                           strides=anchor_stride,
                           name='rpn_conv_shared')(feature_map)
    
        # Anchor Score. [batch, height, width, anchors per location * 2].
        x = KL.Conv2D(2 * anchors_per_location, (1, 1), padding='valid',
                      activation='linear', name='rpn_class_raw')(shared)
    
        # Reshape to [batch, anchors, 2]
        rpn_class_logits = KL.Lambda(
            lambda t: tf.reshape(t, [tf.shape(t)[0], -1, 2]))(x)
        # Output tensors to a Model must be Keras tensors, 所以下面不行
        # rpn_class_logits = tf.reshape(x, [tf.shape(x)[0], -1, 2])
    
        # Softmax on last dimension of BG/FG.
        rpn_probs = KL.Activation(
            "softmax", name="rpn_class_xxx")(rpn_class_logits)
    
        # Bounding box refinement. [batch, H, W, anchors per location * depth]
        # where depth is [x, y, log(w), log(h)]
        x = KL.Conv2D(anchors_per_location * 4, (1, 1), padding="valid",
                      activation='linear', name='rpn_bbox_pred')(shared)
    
        # Reshape to [batch, anchors, 4]
        rpn_bbox = KL.Lambda(lambda t: tf.reshape(t, [tf.shape(t)[0], -1, 4]))(x)
    
        return [rpn_class_logits, rpn_probs, rpn_bbox]
    
    
    def build_rpn_model(anchor_stride, anchors_per_location, depth):
        """Builds a Keras model of the Region Proposal Network.
        It wraps the RPN graph so it can be used multiple times with shared
        weights.
    
        anchors_per_location: number of anchors per pixel in the feature map
        anchor_stride: Controls the density of anchors. Typically 1 (anchors for
                       every pixel in the feature map), or 2 (every other pixel).
        depth: Depth of the backbone feature map.
    
        Returns a Keras Model object. The model outputs, when called, are:
        rpn_class_logits: [batch, H * W * anchors_per_location, 2] Anchor classifier logits (before softmax)
        rpn_probs: [batch, H * W * anchors_per_location, 2] Anchor classifier probabilities.
        rpn_bbox: [batch, H * W * anchors_per_location, (dy, dx, log(dh), log(dw))] Deltas to be
                    applied to anchors.
        """
        input_feature_map = KL.Input(shape=[None, None, depth],
                                     name="input_rpn_feature_map")
        # [rpn_class_logits, rpn_probs, rpn_bbox] input_feature_map 3 1
        outputs = rpn_graph(input_feature_map, anchors_per_location, anchor_stride)
        return KM.Model([input_feature_map], outputs, name="rpn_model")
    

    接前文主函数,我们将获取的list形式的各层锚框信息进行拼接重组:

            # Loop through pyramid layers
            layer_outputs = []  # list of lists
            for p in rpn_feature_maps:
                layer_outputs.append(rpn([p]))  # 保存各pyramid特征经过RPN之后的结果
            # Concatenate layer outputs
            # Convert from list of lists of level outputs to list of lists
            # of outputs across levels.
            # e.g. [[a1, b1, c1], [a2, b2, c2]] => [[a1, a2], [b1, b2], [c1, c2]]
            output_names = ["rpn_class_logits", "rpn_class", "rpn_bbox"]
            outputs = list(zip(*layer_outputs))  # [[logits2,……6], [class2,……6], [bbox2,……6]]
            outputs = [KL.Concatenate(axis=1, name=n)(list(o))
                       for o, n in zip(outputs, output_names)]
    
            # [batch, num_anchors, 2/4]
            # 其中num_anchors指的是全部特征层上的anchors总数
            rpn_class_logits, rpn_class, rpn_bbox = outputs
    

    目的很简单,原来的返回值为[(logits2, class2, bbox2), (logits3, class3, bbox3), ……],首先将之转换为[[logits2,……6], [class2,……6], [bbox2,……6]],然后将每个小list中的tensor按照第一维度(即anchors维度)拼接,得到三个tensor,每个tensor表明batch中图片对应5个特征层的全部anchors的分类回归信息,即:[batch, anchors, 2分类结果 or (dy, dx, log(dh), log(dw))]。

    二、Proposal建议区生成 

    上一步我们获取了全部锚框的信息,这里我们的目的是从中挑选指定个数的更可能包含obj的锚框作为建议区域,即我们希望获取在上一步的二分类中前景得分更高的框,同时,由于锚框生成算法的设计,其数量巨大且重叠严重,我们在得分高低的基础上,进一步的希望能够去重(非极大值抑制),这就是proposal生成的目的。

    接前文主函数,我们用下面的代码进入候选区生成过程,

            # Generate proposals
            # Proposals are [batch, N, (y1, x1, y2, x2)] in normalized coordinates
            # and zero padded.
            # POST_NMS_ROIS_INFERENCE = 1000
            # POST_NMS_ROIS_TRAINING = 2000
            proposal_count = config.POST_NMS_ROIS_TRAINING if mode == "training"
                else config.POST_NMS_ROIS_INFERENCE
            # [IMAGES_PER_GPU, num_rois, (y1, x1, y2, x2)]
            # IMAGES_PER_GPU取代了batch,之后说的batch都是IMAGES_PER_GPU
            rpn_rois = ProposalLayer(
                proposal_count=proposal_count,
                nms_threshold=config.RPN_NMS_THRESHOLD,  # 0.7
                name="ROI",
                config=config)([rpn_class, rpn_bbox, anchors])
    

    proposal_count是一个整数,用于指定生成proposal数目,不足时会生成坐标为[0,0,0,0]的空值进行补全。

    1、初始化ProposalLayer class

    下面我们来看看ProposalLayer的过程,在初始部分我们获取[rpn_class, rpn_bbox, anchors]三个张量作为参数,

    class ProposalLayer(KE.Layer):
        """Receives anchor scores and selects a subset to pass as proposals
        to the second stage. Filtering is done based on anchor scores and
        non-max suppression to remove overlaps. It also applies bounding
        box refinement deltas to anchors.
    
        Inputs:
            rpn_probs: [batch, num_anchors, (bg prob, fg prob)]
            rpn_bbox: [batch, num_anchors, (dy, dx, log(dh), log(dw))]
            anchors: [batch, num_anchors, (y1, x1, y2, x2)] anchors in normalized coordinates
    
        Returns:
            Proposals in normalized coordinates [batch, rois, (y1, x1, y2, x2)]
        """
    
        def __init__(self, proposal_count, nms_threshold, config=None, **kwargs):
            super(ProposalLayer, self).__init__(**kwargs)
            self.config = config
            self.proposal_count = proposal_count
            self.nms_threshold = nms_threshold
    
        def call(self, inputs):
            # [rpn_class, rpn_bbox, anchors]
    
            # Box Scores. Use the foreground class confidence. [batch, num_rois, 2]->[batch, num_rois]
            scores = inputs[0][:, :, 1]
            # Box deltas. 记录坐标修正信息:(dy, dx, log(dh), log(dw)). [batch, num_rois, 4]
            deltas = inputs[1]
            deltas = deltas * np.reshape(self.config.RPN_BBOX_STD_DEV, [1, 1, 4])  # [ 0.1  0.1  0.2  0.2]
            # Anchors. 记录坐标信息:(y1, x1, y2, x2). [batch, num_rois, 4]
            anchors = inputs[2]
    

    这里的变量scores = inputs[0][:, :, 1],即我们只需要全部候选框的前景得分。

    2、top k锚框筛选

    然后我们获取前景得分最大的n个候选框,

            # Improve performance by trimming to top anchors by score
            # and doing the rest on the smaller subset.
            pre_nms_limit = tf.minimum(self.config.PRE_NMS_LIMIT, tf.shape(anchors)[1])
            # 输入矩阵时输出每一行的top k. [batch, top_k]
            ix = tf.nn.top_k(scores, pre_nms_limit, sorted=True,
                             name="top_anchors").indices
    

    提取top k锚框,我们同时对三个输入进行了提取

            # batch_slice函数:
            # #   将batch特征拆分为单张
            # #   然后提取指定的张数
            # #   使用单张特征处理函数处理,并合并(此时返回的第一维不是输入时的batch,而是上步指定的张数)
            scores = utils.batch_slice([scores, ix], lambda x, y: tf.gather(x, y),
                                       self.config.IMAGES_PER_GPU)
            deltas = utils.batch_slice([deltas, ix], lambda x, y: tf.gather(x, y),
                                       self.config.IMAGES_PER_GPU)
            pre_nms_anchors = utils.batch_slice([anchors, ix], lambda a, x: tf.gather(a, x),
                                                self.config.IMAGES_PER_GPU,
                                                names=["pre_nms_anchors"])
    

    附录.辅助函数batch_slice

    其中使用了一个后面也会大量使用的函数:batch_slice,我尝试使用tf的while_loop进行了改写。

    这个函数将只支持batch为1的函数进行了扩展(实际就是不能有batch维度的函数),tf.gather函数只能进行一维数组的切片,而scares为2维[batch, num_rois],相对的ix也是二维[batch, top_k],所以我们需要将两者切片应用函数后将结果拼接。

    【注】本函数位于util.py而非model.py

    # ## Batch Slicing
    # Some custom layers support a batch size of 1 only, and require a lot of work
    # to support batches greater than 1. This function slices an input tensor
    # across the batch dimension and feeds batches of size 1. Effectively,
    # an easy way to support batches > 1 quickly with little code modification.
    # In the long run, it's more efficient to modify the code to support large
    # batches and getting rid of this function. Consider this a temporary solution
    def batch_slice(inputs, graph_fn, batch_size, names=None):
        """Splits inputs into slices and feeds each slice to a copy of the given
        computation graph and then combines the results. It allows you to run a
        graph on a batch of inputs even if the graph is written to support one
        instance only.
    
        inputs: list of tensors. All must have the same first dimension length
        graph_fn: A function that returns a TF tensor that's part of a graph.
        batch_size: number of slices to divide the data into.
        names: If provided, assigns names to the resulting tensors.
        """
        if not isinstance(inputs, list):
            inputs = [inputs]
    
        outputs = []
        for i in range(batch_size):
            inputs_slice = [x[i] for x in inputs]
            output_slice = graph_fn(*inputs_slice)
            if not isinstance(output_slice, (tuple, list)):
                output_slice = [output_slice]
            outputs.append(output_slice)
    
        # 使用tf.while_loop实现循环体代码如下:
        # import tensorflow as tf
        # i = 0
        # outputs = []
        #
        # def cond(index):
        #     return index < batch_size  # 返回bool值
        #
        # def body(index):
        #     index += 1
        #     inputs_slice = [x[i] for x in inputs]
        #     output_slice = graph_fn(*inputs_slice)
        #     if not isinstance(output_slice, (tuple, list)):
        #         output_slice = [output_slice]
        #     outputs.append(output_slice)
        #     return index  # 返回cond需要的判断参数进行下一次判断
        #
        # tf.while_loop(cond, body, [i])
    
        # Change outputs from a list of slices where each is
        # a list of outputs to a list of outputs and each has
        # a list of slices
        # 下面示意中假设每次graph_fn返回两个tensor
        # [[tensor11, tensor12], [tensor21, tensor22], ……]
        # ——> [(tensor11, tensor21, ……), (tensor12, tensor22, ……)]  zip返回的是多个tuple
        outputs = list(zip(*outputs))
    
        if names is None:
            names = [None] * len(outputs)
    
        # 一般来讲就是batch维度合并回去(上面的for循环实际是将batch拆分了)
        result = [tf.stack(o, axis=0, name=n)
                  for o, n in zip(outputs, names)]
        if len(result) == 1:
            result = result[0]
    
        return result
    

    3、锚框坐标初调

    我们在RPN中获取了全部锚框的坐标回归结果,rpn_bbox:[batch, anchors, (dy, dx, log(dh), log(dw))],2小节中我们将top k锚框的坐标信息以及top k的回归信息提取了出来,现在我们将之合并(使用RPN回归的结果取修正top k锚框的坐标),

            # Apply deltas to anchors to get refined anchors.
            # [IMAGES_PER_GPU, top_k, (y1, x1, y2, x2)]
            boxes = utils.batch_slice([pre_nms_anchors, deltas],
                                      lambda x, y: apply_box_deltas_graph(x, y),
                                      self.config.IMAGES_PER_GPU,
                                      names=["refined_anchors"])
    

     函数如下,

    def apply_box_deltas_graph(boxes, deltas):
        """Applies the given deltas to the given boxes.
        boxes: [N, (y1, x1, y2, x2)] boxes to update
        deltas: [N, (dy, dx, log(dh), log(dw))] refinements to apply
        """
        # dy = (y_n - y_o)/h_o
        # dx = (x_n - x_o)/w_o
        # dh = h_n/h_o
        # dw = w_n/w_o
    
        # Convert to y, x, h, w
        height = boxes[:, 2] - boxes[:, 0]
        width = boxes[:, 3] - boxes[:, 1]
        center_y = boxes[:, 0] + 0.5 * height
        center_x = boxes[:, 1] + 0.5 * width
        # Apply deltas
        center_y += deltas[:, 0] * height
        center_x += deltas[:, 1] * width
        height *= tf.exp(deltas[:, 2])
        width *= tf.exp(deltas[:, 3])
        # Convert back to y1, x1, y2, x2
        y1 = center_y - 0.5 * height
        x1 = center_x - 0.5 * width
        y2 = y1 + height
        x2 = x1 + width
        result = tf.stack([y1, x1, y2, x2], axis=1, name="apply_box_deltas_out")
        return result
    

    自此我们在代码层面认识到了回归结果4个坐标值的真正含义:

     dy = (y_n - y_o)/h_o

    dx = (x_n - x_o)/w_o

    dh = h_n/h_o #

    dw = w_n/w_o

    注意,我们的锚框坐标实际上是位于一个归一化了的图上(SSD也是如此且有过介绍,见『TensorFlow』SSD源码学习_其三:锚框生成,即所有锚框位于一个长宽为1的虚拟画布上),上一步的修正进行之后不再能够保证这一点,所以我们需要切除锚框越界的的部分(即只保留锚框和[0,0,1,1]画布的交集)。

            # Clip to image boundaries. Since we're in normalized coordinates,
            # clip to 0..1 range. [IMAGES_PER_GPU, top_k, (y1, x1, y2, x2)]
            window = np.array([0, 0, 1, 1], dtype=np.float32)
            boxes = utils.batch_slice(boxes,  # boxes来源自anchors, 修正deltas的影响
                                      lambda x: clip_boxes_graph(x, window),
                                      self.config.IMAGES_PER_GPU,
                                      names=["refined_anchors_clipped"])
    

    保留交集函数如下,

    def clip_boxes_graph(boxes, window):
        """
        boxes: [N, (y1, x1, y2, x2)]
        window: [4] in the form y1, x1, y2, x2
        """
        # Split
        wy1, wx1, wy2, wx2 = tf.split(window, 4)
        y1, x1, y2, x2 = tf.split(boxes, 4, axis=1)
        # Clip
        y1 = tf.maximum(tf.minimum(y1, wy2), wy1)
        x1 = tf.maximum(tf.minimum(x1, wx2), wx1)
        y2 = tf.maximum(tf.minimum(y2, wy2), wy1)
        x2 = tf.maximum(tf.minimum(x2, wx2), wx1)
        clipped = tf.concat([y1, x1, y2, x2], axis=1, name="clipped_boxes")
        clipped.set_shape((clipped.shape[0], 4))
        return clipped
    

    4、非极大值抑制

    最后进行非极大值抑制,确保不会出现过于重复的推荐区域,

            # Filter out small boxes
            # According to Xinlei Chen's paper, this reduces detection accuracy
            # for small objects, so we're skipping it.
    
            # Non-max suppression
            def nms(boxes, scores):
                """
                非极大值抑制子函数
                :param boxes: [top_k, (y1, x1, y2, x2)]
                :param scores: [top_k]
                :return: 
                """
                indices = tf.image.non_max_suppression(
                    boxes, scores, self.proposal_count,  # 参数三为最大返回数目
                    self.nms_threshold, name="rpn_non_max_suppression")
                proposals = tf.gather(boxes, indices)
                # Pad if needed, 一旦返回数目不足, 填充(0,0,0,0)直到数目达标
                padding = tf.maximum(self.proposal_count - tf.shape(proposals)[0], 0)
                # 在后面添加全0行
                proposals = tf.pad(proposals, [(0, padding), (0, 0)])
                return proposals
            proposals = utils.batch_slice([boxes, scores], nms,
                                          self.config.IMAGES_PER_GPU)
            return proposals  # [IMAGES_PER_GPU, proposal_count, (y1, x1, y2, x2)]
    

    没错,TensorFlow以经封装好了:tf.image.non_max_suppression

    至此,我们获取了全部的推荐区域。

  • 相关阅读:
    数据结构实验之链表一:顺序建立链表
    数据结构实验之链表五:单链表的拆分
    最终排名
    选夫婿1
    数据结构实验之链表三:链表的逆置
    数据结构实验之链表二:逆序建立链表
    数据结构实验之链表四:有序链表的归并
    水题
    win32线程简单封装
    Boost 1.46.1,vc2005, 编译
  • 原文地址:https://www.cnblogs.com/hellcat/p/9811301.html
Copyright © 2011-2022 走看看