zoukankan      html  css  js  c++  java
  • 『计算机视觉』Mask-RCNN_推断网络其四:FPN和ROIAlign的耦合

    一、模块概述

    上节的最后,我们进行了如下操作获取了有限的proposal,

    # [IMAGES_PER_GPU, num_rois, (y1, x1, y2, x2)]
    # IMAGES_PER_GPU取代了batch,之后说的batch都是IMAGES_PER_GPU
    rpn_rois = ProposalLayer(
        proposal_count=proposal_count,
        nms_threshold=config.RPN_NMS_THRESHOLD,  # 0.7
        name="ROI",
        config=config)([rpn_class, rpn_bbox, anchors])
    

    总结一下:

    与 GT 的 IOU 大于0.7

    与某一个 GT 的 IOU 最大的那个 anchor

    进一步,我们需要按照RCNN的思路,使用proposal对共享特征进行ROI操作,在Mask-RCNN中这里有两个创新:

    ROI使用ROI Align取代了之前的ROI Pooling

    共享特征由之前的单层变换为了FPN得到的金字塔多层特征,即:mrcnn_feature_maps = [P2, P3, P4, P5]

    其中创新点2意味着我们不同的proposal对应去ROI的特征层并不相同,所以,我们需要:

    按照proposal的长宽,将不同的proposal对应给不同的特征层

    在对应特征层上进行ROI操作

    二、实现分析

    下面会用到高维切片函数,这里先行给出讲解链接:『TensorFlow』高级高维切片gather_nd

    接前文bulid函数代码,我们如下调入实现本节的功能,

            if mode == "training":    
                ……
            else:
                # Network Heads
                # Proposal classifier and BBox regressor heads
                # output shapes:
                #     mrcnn_class_logits: [batch, num_rois, NUM_CLASSES] classifier logits (before softmax)
                #     mrcnn_class: [batch, num_rois, NUM_CLASSES] classifier probabilities
                #     mrcnn_bbox(deltas): [batch, num_rois, NUM_CLASSES, (dy, dx, log(dh), log(dw))]
                mrcnn_class_logits, mrcnn_class, mrcnn_bbox =
                    fpn_classifier_graph(rpn_rois, mrcnn_feature_maps, input_image_meta,
                                         config.POOL_SIZE, config.NUM_CLASSES,
                                         train_bn=config.TRAIN_BN,
                                         fc_layers_size=config.FPN_CLASSIF_FC_LAYERS_SIZE)    
    

    FPN特征层分类函数纵览如下,

    ############################################################
    #  Feature Pyramid Network Heads
    ############################################################
    
    def fpn_classifier_graph(rois, feature_maps, image_meta,
                             pool_size, num_classes, train_bn=True,
                             fc_layers_size=1024):
        """Builds the computation graph of the feature pyramid network classifier
        and regressor heads.
    
        rois: [batch, num_rois, (y1, x1, y2, x2)] Proposal boxes in normalized
              coordinates.
        feature_maps: List of feature maps from different layers of the pyramid,
                      [P2, P3, P4, P5]. Each has a different resolution.
        image_meta: [batch, (meta data)] Image details. See compose_image_meta()
        pool_size: The width of the square feature map generated from ROI Pooling.
        num_classes: number of classes, which determines the depth of the results
        train_bn: Boolean. Train or freeze Batch Norm layers
        fc_layers_size: Size of the 2 FC layers
    
        Returns:
            logits: [batch, num_rois, NUM_CLASSES] classifier logits (before softmax)
            probs: [batch, num_rois, NUM_CLASSES] classifier probabilities
            bbox_deltas: [batch, num_rois, NUM_CLASSES, (dy, dx, log(dh), log(dw))] Deltas to apply to
                         proposal boxes
        """
        # ROI Pooling
        # Shape: [batch, num_rois, POOL_SIZE, POOL_SIZE, channels]
        x = PyramidROIAlign([pool_size, pool_size],
                            name="roi_align_classifier")([rois, image_meta] + feature_maps)
    
        # Two 1024 FC layers (implemented with Conv2D for consistency)
        # TimeDistributed拆分了输入数据的第1维(从0开始),将完全一样的模型独立的应用于拆分后的输入数据,具体到下行,
        # 就是将num_rois个卷积应用到num_rois个维度为[batch, POOL_SIZE, POOL_SIZE, channels]的输入,结果合并
        x = KL.TimeDistributed(KL.Conv2D(fc_layers_size, (pool_size, pool_size), padding="valid"),
                               name="mrcnn_class_conv1")(x)  # [batch, num_rois, 1, 1, 1024]
        x = KL.TimeDistributed(BatchNorm(), name='mrcnn_class_bn1')(x, training=train_bn)
        x = KL.Activation('relu')(x)
        x = KL.TimeDistributed(KL.Conv2D(fc_layers_size, (1, 1)),
                               name="mrcnn_class_conv2")(x)
        x = KL.TimeDistributed(BatchNorm(), name='mrcnn_class_bn2')(x, training=train_bn)
        x = KL.Activation('relu')(x)
    
        shared = KL.Lambda(lambda x: K.squeeze(K.squeeze(x, 3), 2),
                           name="pool_squeeze")(x)  # [batch, num_rois, 1024]
    
        # Classifier head
        mrcnn_class_logits = KL.TimeDistributed(KL.Dense(num_classes),
                                                name='mrcnn_class_logits')(shared)
        mrcnn_probs = KL.TimeDistributed(KL.Activation("softmax"),
                                         name="mrcnn_class")(mrcnn_class_logits)
    
        # BBox head
        # [batch, num_rois, NUM_CLASSES * (dy, dx, log(dh), log(dw))]
        x = KL.TimeDistributed(KL.Dense(num_classes * 4, activation='linear'),
                               name='mrcnn_bbox_fc')(shared)
        # Reshape to [batch, num_rois, NUM_CLASSES, (dy, dx, log(dh), log(dw))]
        s = K.int_shape(x)
        # 下行源码:K.reshape(inputs, (K.shape(inputs)[0],) + self.target_shape)
        mrcnn_bbox = KL.Reshape((s[1], num_classes, 4), name="mrcnn_bbox")(x)
    
        return mrcnn_class_logits, mrcnn_probs, mrcnn_bbox
    

    下面我们来分析一下该函数。进入函数,首先调用了PyramidROI,

        # ROI Pooling
        # Shape: [batch, num_rois, POOL_SIZE, POOL_SIZE, channels]
        x = PyramidROIAlign([pool_size, pool_size],
                            name="roi_align_classifier")([rois, image_meta] + feature_maps)
    

    这个class基本实现了我们开篇所说的全部功能,即特征层分类并ROI。

    ROIAlign类

    首先我们依据『计算机视觉』FPN特征金字塔网络中第三节所讲,对proposal进行分类,注意的是我们使用于网络中的hw是归一化了的(以原图hw为单位长度),所以计算时需要还原(对于公式而言:w,h分别表示宽度和高度;k是分配RoI的level;640?wx_fmt=png是w,h=224,224时映射的level)。

    注意两个操作节点:level_boxes和box_indices,第一个记录了对应的level特征层中分配到的每个box的坐标,第二个则记录了每个box对应的图片在batch中的索引(一个记录了候选框索引对应的图片即下文中的两个大块,一个记录了候选框的索引对应其坐标即小黑框的坐标),两者结合可以索引到下面每个黑色小框的坐标信息。

    至于ROI Align本身,实际就是双线性插值,使用内置API实现即可。

    这里属于RPN网络和RCNN网络的分界线,level_boxes和box_indices本身属于RPN计算出来结果,但是两者作用于feature后的输出Tensor却是RCNN部分的输入,但是两部分的梯度不能相互流通的,所以需要tf.stop_gradient()截断梯度传播。

    ############################################################
    #  ROIAlign Layer
    ############################################################
    
    def log2_graph(x):
        """Implementation of Log2. TF doesn't have a native implementation."""
        return tf.log(x) / tf.log(2.0)
    
    
    class PyramidROIAlign(KE.Layer):
        """Implements ROI Pooling on multiple levels of the feature pyramid.
    
        Params:
        - pool_shape: [pool_height, pool_width] of the output pooled regions. Usually [7, 7]
    
        Inputs:
        - boxes: [batch, num_boxes, (y1, x1, y2, x2)] in normalized
                 coordinates. Possibly padded with zeros if not enough
                 boxes to fill the array.
        - image_meta: [batch, (meta data)] Image details. See compose_image_meta()
        - feature_maps: List of feature maps from different levels of the pyramid.
                        Each is [batch, height, width, channels]
    
        Output:
        Pooled regions in the shape: [batch, num_boxes, pool_height, pool_width, channels].
        The width and height are those specific in the pool_shape in the layer
        constructor.
        """
    
        def __init__(self, pool_shape, **kwargs):
            super(PyramidROIAlign, self).__init__(**kwargs)
            self.pool_shape = tuple(pool_shape)
    
        def call(self, inputs):
            # num_boxes指的是proposal数目,它们均会作用于每张图片上,只是不同的proposal作用于图片
            # 的特征级别不同,我通过循环特征层寻找符合的proposal,应用ROIAlign
            # Crop boxes [batch, num_boxes, (y1, x1, y2, x2)] in normalized coords
            boxes = inputs[0]
    
            # Image meta
            # Holds details about the image. See compose_image_meta()
            image_meta = inputs[1]
    
            # Feature Maps. List of feature maps from different level of the
            # feature pyramid. Each is [batch, height, width, channels]
            feature_maps = inputs[2:]
    
            # Assign each ROI to a level in the pyramid based on the ROI area.
            y1, x1, y2, x2 = tf.split(boxes, 4, axis=2)
            h = y2 - y1
            w = x2 - x1
            # Use shape of first image. Images in a batch must have the same size.
            image_shape = parse_image_meta_graph(image_meta)['image_shape'][0]  # h, w, c
            # Equation 1 in the Feature Pyramid Networks paper. Account for
            # the fact that our coordinates are normalized here.
            # e.g. a 224x224 ROI (in pixels) maps to P4
            image_area = tf.cast(image_shape[0] * image_shape[1], tf.float32)
            roi_level = log2_graph(tf.sqrt(h * w) / (224.0 / tf.sqrt(image_area)))  # h、w已经归一化
            roi_level = tf.minimum(5, tf.maximum(
                2, 4 + tf.cast(tf.round(roi_level), tf.int32)))  # 确保值位于2到5之间
            roi_level = tf.squeeze(roi_level, 2)  # [batch, num_boxes]
    
            # Loop through levels and apply ROI pooling to each. P2 to P5.
            pooled = []
            box_to_level = []
            for i, level in enumerate(range(2, 6)):
                # tf.where 返回值格式 [坐标1, 坐标2……]
                # np.where 返回值格式 [[坐标1.x, 坐标2.x……], [坐标1.y, 坐标2.y……]]
                ix = tf.where(tf.equal(roi_level, level))  # 返回坐标表示:第n张图片的第i个proposal
                level_boxes = tf.gather_nd(boxes, ix)  # [本level的proposal数目, 4]
    
                # Box indices for crop_and_resize.
                box_indices = tf.cast(ix[:, 0], tf.int32)  # 记录每个propose对应图片序号
    
                # Keep track of which box is mapped to which level
                box_to_level.append(ix)
    
                # Stop gradient propogation to ROI proposals
                level_boxes = tf.stop_gradient(level_boxes)
                box_indices = tf.stop_gradient(box_indices)
    
                # Crop and Resize
                # From Mask R-CNN paper: "We sample four regular locations, so
                # that we can evaluate either max or average pooling. In fact,
                # interpolating only a single value at each bin center (without
                # pooling) is nearly as effective."
                #
                # Here we use the simplified approach of a single value per bin,
                # which is how it's done in tf.crop_and_resize()
                # Result: [this_level_num_boxes, pool_height, pool_width, channels]
                pooled.append(tf.image.crop_and_resize(
                    feature_maps[i], level_boxes, box_indices, self.pool_shape,
                    method="bilinear"))
                # 输入参数shape:
                # [batch, image_height, image_width, channels]
                # [this_level_num_boxes, 4]
                # [this_level_num_boxes]
                # [height, pool_width]
    
            # Pack pooled features into one tensor
            pooled = tf.concat(pooled, axis=0)  # [batch*num_boxes, pool_height, pool_width, channels]
    
            # Pack box_to_level mapping into one array and add another
            # column representing the order of pooled boxes
            box_to_level = tf.concat(box_to_level, axis=0)  # [batch*num_boxes, 2]
            box_range = tf.expand_dims(tf.range(tf.shape(box_to_level)[0]), 1)  # [batch*num_boxes, 1]
            box_to_level = tf.concat([tf.cast(box_to_level, tf.int32), box_range],
                                     axis=1)  # [batch*num_boxes, 3]
    
            # 截止到目前,我们获取了记录全部ROIAlign结果feat集合的张量pooled,和记录这些feat相关信息的张量box_to_level,
            # 由于提取方法的原因,此时的feat并不是按照原始顺序排序(先按batch然后按box index排序),下面我们设法将之恢复顺
            # 序(ROIAlign作用于对应图片的对应proposal生成feat)
            # Rearrange pooled features to match the order of the original boxes
            # Sort box_to_level by batch then box index
            # TF doesn't have a way to sort by two columns, so merge them and sort.
            # box_to_level[i, 0]表示的是当前feat隶属的图片索引,box_to_level[i, 1]表示的是其box序号
            sorting_tensor = box_to_level[:, 0] * 100000 + box_to_level[:, 1]  # [batch*num_boxes]
            ix = tf.nn.top_k(sorting_tensor, k=tf.shape(
                box_to_level)[0]).indices[::-1]
            ix = tf.gather(box_to_level[:, 2], ix)
            pooled = tf.gather(pooled, ix)
    
            # Re-add the batch dimension
            # [batch, num_boxes, (y1, x1, y2, x2)], [batch*num_boxes, pool_height, pool_width, channels]
            shape = tf.concat([tf.shape(boxes)[:2], tf.shape(pooled)[1:]], axis=0)
            pooled = tf.reshape(pooled, shape)
            return pooled  # [batch, num_boxes, pool_height, pool_width, channels]
    

    初步分类/回归

    经过ROI之后,我们获取了众多shape一致的小feat,为了获取他们的分类回归信息,我们构建一系列并行的网络进行处理,

        # Two 1024 FC layers (implemented with Conv2D for consistency)
        # TimeDistributed拆分了输入数据的第1维(从0开始),将完全一样的模型独立的应用于拆分后的输入数据,具体到下行,
        # 就是将num_rois个卷积应用到num_rois个维度为[batch, POOL_SIZE, POOL_SIZE, channels]的输入,结果合并
        x = KL.TimeDistributed(KL.Conv2D(fc_layers_size, (pool_size, pool_size), padding="valid"),
                               name="mrcnn_class_conv1")(x)  # [batch, num_rois, 1, 1, 1024]
        x = KL.TimeDistributed(BatchNorm(), name='mrcnn_class_bn1')(x, training=train_bn)
        x = KL.Activation('relu')(x)
        x = KL.TimeDistributed(KL.Conv2D(fc_layers_size, (1, 1)),
                               name="mrcnn_class_conv2")(x)
        x = KL.TimeDistributed(BatchNorm(), name='mrcnn_class_bn2')(x, training=train_bn)
        x = KL.Activation('relu')(x)
    
        shared = KL.Lambda(lambda x: K.squeeze(K.squeeze(x, 3), 2),
                           name="pool_squeeze")(x)  # [batch, num_rois, 1024]
    
        # Classifier head
        mrcnn_class_logits = KL.TimeDistributed(KL.Dense(num_classes),
                                                name='mrcnn_class_logits')(shared)
        mrcnn_probs = KL.TimeDistributed(KL.Activation("softmax"),
                                         name="mrcnn_class")(mrcnn_class_logits)
    
        # BBox head
        # [batch, num_rois, NUM_CLASSES * (dy, dx, log(dh), log(dw))]
        x = KL.TimeDistributed(KL.Dense(num_classes * 4, activation='linear'),
                               name='mrcnn_bbox_fc')(shared)
        # Reshape to [batch, num_rois, NUM_CLASSES, (dy, dx, log(dh), log(dw))]
        s = K.int_shape(x)
        # 下行源码:K.reshape(inputs, (K.shape(inputs)[0],) + self.target_shape)
        mrcnn_bbox = KL.Reshape((s[1], num_classes, 4), name="mrcnn_bbox")(x)
    
        return mrcnn_class_logits, mrcnn_probs, mrcnn_bbox
    

    返回如下:

    mrcnn_class_logits:      [batch, num_rois, NUM_CLASSES]    classifier logits (before softmax)
    mrcnn_class:                [batch, num_rois, NUM_CLASSES]    classifier probabilities
    mrcnn_bbox(deltas):    [batch, num_rois, NUM_CLASSES, (dy, dx, log(dh), log(dw))]

    KL.TimeDistributed实现建立一系列同样架构的的并行网络结构(dim0个),将[dim0, dim1, ……]中的每个[dim1, ……]作为输入,并行的计算输出。

    附、build函数总览

        def build(self, mode, config):
            """Build Mask R-CNN architecture.
                input_shape: The shape of the input image.
                mode: Either "training" or "inference". The inputs and
                    outputs of the model differ accordingly.
            """
            assert mode in ['training', 'inference']
    
            # Image size must be dividable by 2 multiple times
            h, w = config.IMAGE_SHAPE[:2]  # [1024 1024 3]
            if h / 2**6 != int(h / 2**6) or w / 2**6 != int(w / 2**6):  # 这里就限定了下采样不会产生坐标误差
                raise Exception("Image size must be dividable by 2 at least 6 times "
                                "to avoid fractions when downscaling and upscaling."
                                "For example, use 256, 320, 384, 448, 512, ... etc. ")
    
            # Inputs
            input_image = KL.Input(
                shape=[None, None, config.IMAGE_SHAPE[2]], name="input_image")
            input_image_meta = KL.Input(shape=[config.IMAGE_META_SIZE],
                                        name="input_image_meta")
            if mode == "training":
                # RPN GT
                input_rpn_match = KL.Input(
                    shape=[None, 1], name="input_rpn_match", dtype=tf.int32)
                input_rpn_bbox = KL.Input(
                    shape=[None, 4], name="input_rpn_bbox", dtype=tf.float32)
    
                # Detection GT (class IDs, bounding boxes, and masks)
                # 1. GT Class IDs (zero padded)
                input_gt_class_ids = KL.Input(
                    shape=[None], name="input_gt_class_ids", dtype=tf.int32)
                # 2. GT Boxes in pixels (zero padded)
                # [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)] in image coordinates
                input_gt_boxes = KL.Input(
                    shape=[None, 4], name="input_gt_boxes", dtype=tf.float32)
                # Normalize coordinates
                gt_boxes = KL.Lambda(lambda x: norm_boxes_graph(
                    x, K.shape(input_image)[1:3]))(input_gt_boxes)
                # 3. GT Masks (zero padded)
                # [batch, height, width, MAX_GT_INSTANCES]
                if config.USE_MINI_MASK:
                    input_gt_masks = KL.Input(
                        shape=[config.MINI_MASK_SHAPE[0],
                               config.MINI_MASK_SHAPE[1], None],
                        name="input_gt_masks", dtype=bool)
                else:
                    input_gt_masks = KL.Input(
                        shape=[config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1], None],
                        name="input_gt_masks", dtype=bool)
            elif mode == "inference":
                # Anchors in normalized coordinates
                input_anchors = KL.Input(shape=[None, 4], name="input_anchors")
    
            # Build the shared convolutional layers.
            # Bottom-up Layers
            # Returns a list of the last layers of each stage, 5 in total.
            # Don't create the thead (stage 5), so we pick the 4th item in the list.
            if callable(config.BACKBONE):
                _, C2, C3, C4, C5 = config.BACKBONE(input_image, stage5=True,
                                                    train_bn=config.TRAIN_BN)
            else:
                _, C2, C3, C4, C5 = resnet_graph(input_image, config.BACKBONE,
                                                 stage5=True, train_bn=config.TRAIN_BN)
            # Top-down Layers
            # TODO: add assert to varify feature map sizes match what's in config
            P5 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c5p5')(C5)  # 256
            P4 = KL.Add(name="fpn_p4add")([
                KL.UpSampling2D(size=(2, 2), name="fpn_p5upsampled")(P5),
                KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c4p4')(C4)])
            P3 = KL.Add(name="fpn_p3add")([
                KL.UpSampling2D(size=(2, 2), name="fpn_p4upsampled")(P4),
                KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c3p3')(C3)])
            P2 = KL.Add(name="fpn_p2add")([
                KL.UpSampling2D(size=(2, 2), name="fpn_p3upsampled")(P3),
                KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name='fpn_c2p2')(C2)])
            # Attach 3x3 conv to all P layers to get the final feature maps.
            P2 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p2")(P2)
            P3 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p3")(P3)
            P4 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p4")(P4)
            P5 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p5")(P5)
            # P6 is used for the 5th anchor scale in RPN. Generated by
            # subsampling from P5 with stride of 2.
            P6 = KL.MaxPooling2D(pool_size=(1, 1), strides=2, name="fpn_p6")(P5)
    
            # Note that P6 is used in RPN, but not in the classifier heads.
            rpn_feature_maps = [P2, P3, P4, P5, P6]
            mrcnn_feature_maps = [P2, P3, P4, P5]
    
            # Anchors
            if mode == "training":
                anchors = self.get_anchors(config.IMAGE_SHAPE)
                # Duplicate across the batch dimension because Keras requires it
                # TODO: can this be optimized to avoid duplicating the anchors?
                anchors = np.broadcast_to(anchors, (config.BATCH_SIZE,) + anchors.shape)
                # A hack to get around Keras's bad support for constants
                anchors = KL.Lambda(lambda x: tf.Variable(anchors), name="anchors")(input_image)
            else:
                anchors = input_anchors
    
            # RPN Model, 返回的是keras的Module对象, 注意keras中的Module对象是可call的
            rpn = build_rpn_model(config.RPN_ANCHOR_STRIDE,  # 1 3 256
                                  len(config.RPN_ANCHOR_RATIOS), config.TOP_DOWN_PYRAMID_SIZE)
            # Loop through pyramid layers
            layer_outputs = []  # list of lists
            for p in rpn_feature_maps:
                layer_outputs.append(rpn([p]))  # 保存各pyramid特征经过RPN之后的结果
            # Concatenate layer outputs
            # Convert from list of lists of level outputs to list of lists
            # of outputs across levels.
            # e.g. [[a1, b1, c1], [a2, b2, c2]] => [[a1, a2], [b1, b2], [c1, c2]]
            output_names = ["rpn_class_logits", "rpn_class", "rpn_bbox"]
            outputs = list(zip(*layer_outputs))  # [[logits2,……6], [class2,……6], [bbox2,……6]]
            outputs = [KL.Concatenate(axis=1, name=n)(list(o))
                       for o, n in zip(outputs, output_names)]
    
            # [batch, num_anchors, 2/4]
            # 其中num_anchors指的是全部特征层上的anchors总数
            rpn_class_logits, rpn_class, rpn_bbox = outputs
    
            # Generate proposals
            # Proposals are [batch, N, (y1, x1, y2, x2)] in normalized coordinates
            # and zero padded.
            # POST_NMS_ROIS_INFERENCE = 1000
            # POST_NMS_ROIS_TRAINING = 2000
            proposal_count = config.POST_NMS_ROIS_TRAINING if mode == "training"
                else config.POST_NMS_ROIS_INFERENCE
            # [IMAGES_PER_GPU, num_rois, (y1, x1, y2, x2)]
            # IMAGES_PER_GPU取代了batch,之后说的batch都是IMAGES_PER_GPU
            rpn_rois = ProposalLayer(
                proposal_count=proposal_count,
                nms_threshold=config.RPN_NMS_THRESHOLD,  # 0.7
                name="ROI",
                config=config)([rpn_class, rpn_bbox, anchors])
    
            if mode == "training":
                # Class ID mask to mark class IDs supported by the dataset the image
                # came from.
                active_class_ids = KL.Lambda(
                    lambda x: parse_image_meta_graph(x)["active_class_ids"]
                    )(input_image_meta)
    
                if not config.USE_RPN_ROIS:
                    # Ignore predicted ROIs and use ROIs provided as an input.
                    input_rois = KL.Input(shape=[config.POST_NMS_ROIS_TRAINING, 4],
                                          name="input_roi", dtype=np.int32)
                    # Normalize coordinates
                    target_rois = KL.Lambda(lambda x: norm_boxes_graph(
                        x, K.shape(input_image)[1:3]))(input_rois)
                else:
                    target_rois = rpn_rois
    
                # Generate detection targets
                # Subsamples proposals and generates target outputs for training
                # Note that proposal class IDs, gt_boxes, and gt_masks are zero
                # padded. Equally, returned rois and targets are zero padded.
                rois, target_class_ids, target_bbox, target_mask =
                    DetectionTargetLayer(config, name="proposal_targets")([
                        target_rois, input_gt_class_ids, gt_boxes, input_gt_masks])
    
                # Network Heads
                # TODO: verify that this handles zero padded ROIs
                mrcnn_class_logits, mrcnn_class, mrcnn_bbox =
                    fpn_classifier_graph(rois, mrcnn_feature_maps, input_image_meta,
                                         config.POOL_SIZE, config.NUM_CLASSES,
                                         train_bn=config.TRAIN_BN,
                                         fc_layers_size=config.FPN_CLASSIF_FC_LAYERS_SIZE)
    
                mrcnn_mask = build_fpn_mask_graph(rois, mrcnn_feature_maps,
                                                  input_image_meta,
                                                  config.MASK_POOL_SIZE,
                                                  config.NUM_CLASSES,
                                                  train_bn=config.TRAIN_BN)
    
                # TODO: clean up (use tf.identify if necessary)
                output_rois = KL.Lambda(lambda x: x * 1, name="output_rois")(rois)
    
                # Losses
                rpn_class_loss = KL.Lambda(lambda x: rpn_class_loss_graph(*x), name="rpn_class_loss")(
                    [input_rpn_match, rpn_class_logits])
                rpn_bbox_loss = KL.Lambda(lambda x: rpn_bbox_loss_graph(config, *x), name="rpn_bbox_loss")(
                    [input_rpn_bbox, input_rpn_match, rpn_bbox])
                class_loss = KL.Lambda(lambda x: mrcnn_class_loss_graph(*x), name="mrcnn_class_loss")(
                    [target_class_ids, mrcnn_class_logits, active_class_ids])
                bbox_loss = KL.Lambda(lambda x: mrcnn_bbox_loss_graph(*x), name="mrcnn_bbox_loss")(
                    [target_bbox, target_class_ids, mrcnn_bbox])
                mask_loss = KL.Lambda(lambda x: mrcnn_mask_loss_graph(*x), name="mrcnn_mask_loss")(
                    [target_mask, target_class_ids, mrcnn_mask])
    
                # Model
                inputs = [input_image, input_image_meta,
                          input_rpn_match, input_rpn_bbox, input_gt_class_ids, input_gt_boxes, input_gt_masks]
                if not config.USE_RPN_ROIS:
                    inputs.append(input_rois)
                outputs = [rpn_class_logits, rpn_class, rpn_bbox,
                           mrcnn_class_logits, mrcnn_class, mrcnn_bbox, mrcnn_mask,
                           rpn_rois, output_rois,
                           rpn_class_loss, rpn_bbox_loss, class_loss, bbox_loss, mask_loss]
                model = KM.Model(inputs, outputs, name='mask_rcnn')
            else:
                # Network Heads
                # Proposal classifier and BBox regressor heads
                # output shapes:
                #     mrcnn_class_logits: [batch, num_rois, NUM_CLASSES] classifier logits (before softmax)
                #     mrcnn_class: [batch, num_rois, NUM_CLASSES] classifier probabilities
                #     mrcnn_bbox(deltas): [batch, num_rois, NUM_CLASSES, (dy, dx, log(dh), log(dw))]
                mrcnn_class_logits, mrcnn_class, mrcnn_bbox =
                    fpn_classifier_graph(rpn_rois, mrcnn_feature_maps, input_image_meta,
                                         config.POOL_SIZE, config.NUM_CLASSES,
                                         train_bn=config.TRAIN_BN,
                                         fc_layers_size=config.FPN_CLASSIF_FC_LAYERS_SIZE)
    
                # Detections
                # output is [batch, num_detections, (y1, x1, y2, x2, class_id, score)] in
                # normalized coordinates
                detections = DetectionLayer(config, name="mrcnn_detection")(
                    [rpn_rois, mrcnn_class, mrcnn_bbox, input_image_meta])
    
                # Create masks for detections
                detection_boxes = KL.Lambda(lambda x: x[..., :4])(detections)
                mrcnn_mask = build_fpn_mask_graph(detection_boxes, mrcnn_feature_maps,
                                                  input_image_meta,
                                                  config.MASK_POOL_SIZE,
                                                  config.NUM_CLASSES,
                                                  train_bn=config.TRAIN_BN)
    
                model = KM.Model([input_image, input_image_meta, input_anchors],
                                 [detections, mrcnn_class, mrcnn_bbox,
                                     mrcnn_mask, rpn_rois, rpn_class, rpn_bbox],
                                 name='mask_rcnn')
    
            # Add multi-GPU support.
            if config.GPU_COUNT > 1:
                from mrcnn.parallel_model import ParallelModel
                model = ParallelModel(model, config.GPU_COUNT)
    
            return model
    
  • 相关阅读:
    python面试的100题(12)
    python面试的100题(11)
    python面试的100题(10)
    python面试的100题(9)
    python面试的100题(8)
    python面试的100题(7)
    纯js做鼠标拖拽物体并记录鼠标位置的效果(附pageX clientX offsetX screenX的区别图)
    利用function函数做一个简易计算器(getElementById)
    JavaScript中的函数function
    初识JavaScript
  • 原文地址:https://www.cnblogs.com/hellcat/p/9814975.html
Copyright © 2011-2022 走看看