zoukankan      html  css  js  c++  java
  • 【JZOJ3410】Tree【最小生成树】

    题目大意:

    求一张图的生成树,使得所有树边长度的标准差尽量小。
    标准差的定义:设有nn个数的aia_i,他们的平均数是aoverline{a},那么标准差就是i=1n(aia)2nsqrt{frac{sum^{n}_{i=1}(a_i-overline{a})^2}{n}}


    思路:

    由于标准差的大小和方差一致,方差的大小于绝对值之和一致。所以我们求转换成需要满足a1a+a2a+ana|a_1-overline{a}|+|a_2-overline{a}|+|a_n-overline{a}|尽量小。
    所以我们可以枚举每一个绝对值内部的正负,这样就可以脱掉绝对值了。
    我们可以假设一个midmid无限趋近于aoverline{a},那么我们就需要找到与midmid之差尽量小的边,并且这些边可以组成一棵生成树。
    显然我们只需要按照与midmid的差值排序,然后跑一遍最小生成树就行了。
    所以我们就枚举midmid,然后跑最小生成树,用这些边求出标准差即可。
    那么枚举midmid的误差应该在多少以内呢?
    我们假设有两条边的长度分别为5,75,7,那么我们枚举到6时,如果选择5会比选择7更优,但是我们是根据与midmid的差值排序的,此时两者一样,可能我们就优先选择7了。
    所以midmid的误差应该是小于1的。
    同理,如果取0.5的话,两条边长度为5和6,同样可能选择更劣的一条边。
    但是如果选择0.25的话,会选择劣势的边就只有两条边的长度只差为0.5,但是题目要求长度为整数,所以我们得到了如果2x<1,那么x就是一种可行的选择
    但是同时需要注意,我们枚举的误差xx一定要满足1xZ+frac{1}{x}in^+。这样就可以满足取多个midmid后一定可以从xx变成x+1x+1
    所以只要满足两个要求的误差即可:

    • x&lt;0.5x&lt;0.5
    • 1xZ+frac{1}{x}in^+

    这里我取的是误差=0.1=0.1。显然是满足以上要求的。


    代码:

    Download 
    #include <cmath>
    #include <cstdio>
    #include <algorithm>
    using namespace std;
    
    const int N=5010;
    int n,m,tot,father[N];
    double ave,ans,sum,mid,dis[N];
    
    struct edge
    {
    	int from,to,dis;
    }e[N];
    
    bool cmp(edge x,edge y)
    {
    	return fabs((double)x.dis-mid)<fabs((double)y.dis-mid);
    }
    
    int find(int x)
    {
    	return x==father[x]?x:father[x]=find(father[x]);
    }
    
    int main()
    {
    	scanf("%d%d",&n,&m);
    	for (int i=1;i<=m;i++)
    		scanf("%d%d%d",&e[i].from,&e[i].to,&e[i].dis);
    	ans=1000000000000.0;
    	for (mid=0;mid<=100;mid+=0.1)
    	{
    		sort(e+1,e+1+m,cmp);
    		for (int i=1;i<=n;i++)
    			father[i]=i;
    		tot=0; ave=sum=0;
    		for (int i=1;i<=m;i++)
    		{
    			int x=e[i].from,y=e[i].to;
    			if (find(x)!=find(y))
    			{
    				dis[++tot]=(double)e[i].dis;
    				ave+=dis[tot];
    				father[find(x)]=find(y);
    			}
    		}
    		ave/=(double)(n-1);
    		for (int i=1;i<n;i++)
    			sum+=(dis[i]-ave)*(dis[i]-ave);
    		ans=min(ans,sqrt(sum/(double)(n-1)));
    	}
    	printf("%0.4lf",ans);
    	return 0;
    }
    
  • 相关阅读:
    Roads in the North
    Labyrinth
    英语写作(二)
    语法长难句笔记
    英语写作(一)
    MySQL笔记(二)
    MySQL笔记(一)
    Mybatis简单使用与配置
    Mybatis映射文件
    什么是serializable接口?
  • 原文地址:https://www.cnblogs.com/hello-tomorrow/p/11998038.html
Copyright © 2011-2022 走看看