zoukankan      html  css  js  c++  java
  • 【字符串入门专题1】C

    Problem Description
    Generally speaking, there are a lot of problems about strings processing. Now you encounter another such problem. If you get two strings, such as “asdf” and “sdfg”, the result of the addition between them is “asdfg”, for “sdf” is the tail substring of “asdf” and the head substring of the “sdfg” . However, the result comes as “asdfghjk”, when you have to add “asdf” and “ghjk” and guarantee the shortest string first, then the minimum lexicographic second, the same rules for other additions.
     

    Input
    For each case, there are two strings (the chars selected just form ‘a’ to ‘z’) for you, and each length of theirs won’t exceed 10^5 and won’t be empty.
     

    Output
    Print the ultimate string by the book.
     

    Sample Input
    asdf sdfg asdf ghjk
     

    Sample Output
    asdfg asdfghjk

    题意:先按照前后缀长度,再按照字典序,输出两个字符串前缀和后缀最大公共长度。

    思路:因为模式串和匹配串并不是固定给出,所以要交换两个字符串的身份调用kmp两次,计算它们的最大前缀和后缀长度k1,k2,当k1和k2相同时,就比较它们的字典序,否则,按匹配过后的顺序输出。

    更正:这道题真的很有道理,如果按照我注释掉的代码提交虽然能AC,但是asdfadf 和df数据是不能过滴(代码又被小伙伴出的数据给搞掉了,让我想起了被zzq数据支配的噩梦)

    #include<stdio.h>
    #include<string.h>
    #define N 110000
    char s1[N],s2[N];
    int next[N];
    
    void get_next(char *b)
    {
    	int j,k;
    	next[0] = k = -1;
    	j = 0;
    	while(b[j]!='')
    	{
    		if(k==-1||b[j]==b[k])
    			next[++j] = ++k;
    		else
    			k = next[k];
    	}
    	return;
    }
    
    int kmp(char *a,char *b)
    {
    	int j,i;
    	get_next(b);
    	i = j = 0;
    	while(a[i]!='')
    	{
    		while(j!=-1&&a[i]!=b[j])
    			j = next[j];
    		j++;
    		i++;
    	}
        return j;
    	/*while(a[i]!=''&&b[j]!='')
    	{
    		while(j!=-1&&a[i]!=b[j])
    			j = next[j];
    		j++;
    		i++;
    	}printf("i=%d   j=%d
    ",i,j);
    	if(i == strlen(a))
    		return j;
    	return 0;*/
    }
    int main()
    {
    	int k1,k2;
    	while(scanf("%s",s1)!=EOF)
    	{
    		scanf("%s",s2);
    		k1 = kmp(s1,s2);
    		k2 = kmp(s2,s1);printf("k1=%d k2=%d
    ",k1,k2);
    		if(k1 == k2)
    		{
    			if(strcmp(s1,s2)>0)
    			{
    				printf("%s",s2);
    				printf("%s
    ",s1+k1);
    			}
    			else
    			{
    				printf("%s",s1);
    				printf("%s
    ",s2+k1);
    			}
    		}
    		else if(k1 > k2)
    		{
    			printf("%s",s1);
    			printf("%s
    ",s2+k1);
    		}
    		else
    		{
    			printf("%s",s2);
    			printf("%s
    ",s1+k2);
    		}
    	}
    	return 0;
    }
    












  • 相关阅读:
    扩展卢卡斯定理
    扩展中国剩余定理
    扩展欧拉定理
    拓展BSGS
    删边最短路
    树 上 差分
    P4568 JLOI 飞行路线 分层最短路板子
    最短路相关
    P3758 TJOI2017 可乐
    bzoj4173 数学
  • 原文地址:https://www.cnblogs.com/hellocheng/p/7350059.html
Copyright © 2011-2022 走看看