zoukankan      html  css  js  c++  java
  • 【最短路径入门专题1】K

    While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..NM (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

    As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

    To help FJ find out whether this is possible or not, he will supply you with complete maps to F(1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

    Input
    Line 1: A single integer, FF farm descriptions follow. 
    Line 1 of each farm: Three space-separated integers respectively: NM, and W 
    Lines 2.. M+1 of each farm: Three space-separated numbers ( SET) that describe, respectively: a bidirectional path between S and E that requiresT seconds to traverse. Two fields might be connected by more than one path. 
    Lines M+2.. MW+1 of each farm: Three space-separated numbers ( SET) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.
    Output
    Lines 1.. F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).
    Sample Input
    2
    3 3 1
    1 2 2
    1 3 4
    2 3 1
    3 1 3
    3 2 1
    1 2 3
    2 3 4
    3 1 8
    Sample Output
    NO
    YES
    Hint
    For farm 1, FJ cannot travel back in time. 
    For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.
    题意:输入t,再输入t组样例,每组样例输入n,m,w,每行输入三个整数,起点,终点,权值。m行数是边权为正,w行数边权为负,判断他是否能够回到1,或者说判断是否存在负权环.

    思路:一种是用Bellman-Ford写,另一种是用队列优化过SPFA 写。先上用BellmanAC的代码。

    #include<stdio.h>
    #include<string.h>
    #define N 600
    int dis[600];
    struct edge{
    	int from;
    	int to;
    	int w;
    };
    
    edge e[5000];
    int n,m,t,w;
    
    int spfa()
    {
    	int i,j,flag;
    	for(j = 1; j <= n; j ++)
    	{
    		flag = 0;//检测是否存在负权回路
    		for(i = 1; i <= m; i ++)
    		{
    			if(dis[e[i].from] > dis[e[i].to]+e[i].w)
    			{
    				dis[e[i].from] = dis[e[i].to] + e[i].w ;
    				flag = 1;
    			}
    			if(dis[e[i].to] > dis[e[i].from] + e[i].w)
    			{
    				dis[e[i].to] = dis[e[i].from ]+e[i].w;
    				flag = 1;
    			}
    		}
    		for(;i <=w+m; i ++)
    		{
    			if(dis[e[i].to] > dis[e[i].from] - e[i].w)
    			{
    				dis[e[i].to ] = dis[e[i].from ]-e[i].w ;
    				flag = 1;
    			}	
    			
    		}
    		if(!flag)
    			break;
    		if(flag&&j == n)//最多只有n-1条边,如果枚举到n条边,说明存在负权边 
    			return false;
    	}
    	return true;
    }
    
    int main()
    {
    	int i;
    	scanf("%d",&t);
    	while(t --)
    	{
    		scanf("%d%d%d",&n,&m,&w);
    		memset(dis,-1,sizeof(dis));
    		for(i = 1; i <= m+w; i ++)//存入边 
    			scanf("%d%d%d",&e[i].from,&e[i].to,&e[i].w );
    		if(spfa())//判断是否有负权边 
    			printf("NO
    ");
    		else
    			printf("YES
    ");
    	}
    	return 0;
    }

    SPFA的AC代码

    #include<stdio.h>
    #include<iostream>
    #include<queue> 
    #include<string.h>
    using namespace std;
    #define N 600
    int first[N],dis[N];
    int n,m,w;
    int num;
    struct edge{
    	int to,w,next;
    };
    edge e[50000];
    void addedge(int a,int b,int c)
    {
    	e[num].to = b;
    	e[num].w = c;
    	e[num].next = first[a];
    	first[a] = num++;
    }
    
    bool spfa(int s)
    {
    	int used[N];//用来记录一个顶点入队次数 
    	bool book[N];//标记该点是否在队列中 
    	int head,tail,i,to,now;
    	queue<int>Q;
    	memset(used,0,sizeof(used));
    	memset(book,false,sizeof(book));
    	Q.push(s); 
    	book[s] = true;
    	used[s]++;
    	dis[s] = 0;
    	while(!Q.empty())
    	{
    		now = Q.front() ;
    		Q.pop() ;
    		book[now] = false;
    		for(i = first[now];i!=-1;i = e[i].next)
    		{
    			to = e[i].to ;
    			if(dis[to]>dis[now]+e[i].w)
    			{
    				dis[to] = dis[now] + e[i].w ;
    				used[to]++;
    				if(used[to]>=n)//一个点使用超过n,一定存在负环 
    					return false;
    				if(!book[to])//如果顶点不在队列中,入队 
    				{
    					book[to] = true;//标记为已经入队 
    					Q.push(to) ;
    				}
    			}
    		}
    	} 
    	return true;
    }
    int main()
    {
    	int i,a,b,c,t;
    	scanf("%d",&t);
    	while(t --)
    	{
    		scanf("%d%d%d",&n,&m,&w);
    		num = 1;
    		memset(dis,-1,sizeof(dis));
    		memset(first,-1,sizeof(first));
    		for(i = 1; i <= m; i ++)
    		{
    			scanf("%d%d%d",&a,&b,&c);
    			addedge(a,b,c);
    			addedge(b,a,c);
    		}
    		for(i = 1; i <= w; i ++)
    		{
    			scanf("%d%d%d",&a,&b,&c);
    			addedge(a,b,-c);
    		}
    		for(i = 1; i <= n; i ++)
    		{
    			if(dis[i] == -1&&!spfa(i))
    			{
    				i = n+2;
    				break;
    			}
    		}
    		if(i == n+1)
    			printf("NO
    ");
    		else
    			printf("YES
    ");
    	}
    	return 0;
    }
    




    说好的入门题呢????为啥一上来我连dijsktra都还没怎么用就直接上涉及负权边的题。










  • 相关阅读:
    Linux 磁盘管理
    Linux 特殊权限及if语句
    Linux find命令
    MySQL索引知识介绍
    MySQL库表设计小技巧
    教你用SQL实现统计排名
    Truncate用法详解
    utf8字符集下的比较规则
    关于Aborted connection告警日志的分析
    MySQL DDL详情揭露
  • 原文地址:https://www.cnblogs.com/hellocheng/p/7350074.html
Copyright © 2011-2022 走看看