While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.
As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .
To help FJ find out whether this is possible or not, he will supply you with complete maps to F(1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.
Line 1 of each farm: Three space-separated integers respectively: N, M, and W
Lines 2.. M+1 of each farm: Three space-separated numbers ( S, E, T) that describe, respectively: a bidirectional path between S and E that requiresT seconds to traverse. Two fields might be connected by more than one path.
Lines M+2.. M+ W+1 of each farm: Three space-separated numbers ( S, E, T) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.
2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8
NO
YES
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.
#include<stdio.h>
#include<string.h>
#define N 600
int dis[600];
struct edge{
int from;
int to;
int w;
};
edge e[5000];
int n,m,t,w;
int spfa()
{
int i,j,flag;
for(j = 1; j <= n; j ++)
{
flag = 0;//检测是否存在负权回路
for(i = 1; i <= m; i ++)
{
if(dis[e[i].from] > dis[e[i].to]+e[i].w)
{
dis[e[i].from] = dis[e[i].to] + e[i].w ;
flag = 1;
}
if(dis[e[i].to] > dis[e[i].from] + e[i].w)
{
dis[e[i].to] = dis[e[i].from ]+e[i].w;
flag = 1;
}
}
for(;i <=w+m; i ++)
{
if(dis[e[i].to] > dis[e[i].from] - e[i].w)
{
dis[e[i].to ] = dis[e[i].from ]-e[i].w ;
flag = 1;
}
}
if(!flag)
break;
if(flag&&j == n)//最多只有n-1条边,如果枚举到n条边,说明存在负权边
return false;
}
return true;
}
int main()
{
int i;
scanf("%d",&t);
while(t --)
{
scanf("%d%d%d",&n,&m,&w);
memset(dis,-1,sizeof(dis));
for(i = 1; i <= m+w; i ++)//存入边
scanf("%d%d%d",&e[i].from,&e[i].to,&e[i].w );
if(spfa())//判断是否有负权边
printf("NO
");
else
printf("YES
");
}
return 0;
}
SPFA的AC代码
#include<stdio.h> #include<iostream> #include<queue> #include<string.h> using namespace std; #define N 600 int first[N],dis[N]; int n,m,w; int num; struct edge{ int to,w,next; }; edge e[50000]; void addedge(int a,int b,int c) { e[num].to = b; e[num].w = c; e[num].next = first[a]; first[a] = num++; } bool spfa(int s) { int used[N];//用来记录一个顶点入队次数 bool book[N];//标记该点是否在队列中 int head,tail,i,to,now; queue<int>Q; memset(used,0,sizeof(used)); memset(book,false,sizeof(book)); Q.push(s); book[s] = true; used[s]++; dis[s] = 0; while(!Q.empty()) { now = Q.front() ; Q.pop() ; book[now] = false; for(i = first[now];i!=-1;i = e[i].next) { to = e[i].to ; if(dis[to]>dis[now]+e[i].w) { dis[to] = dis[now] + e[i].w ; used[to]++; if(used[to]>=n)//一个点使用超过n,一定存在负环 return false; if(!book[to])//如果顶点不在队列中,入队 { book[to] = true;//标记为已经入队 Q.push(to) ; } } } } return true; } int main() { int i,a,b,c,t; scanf("%d",&t); while(t --) { scanf("%d%d%d",&n,&m,&w); num = 1; memset(dis,-1,sizeof(dis)); memset(first,-1,sizeof(first)); for(i = 1; i <= m; i ++) { scanf("%d%d%d",&a,&b,&c); addedge(a,b,c); addedge(b,a,c); } for(i = 1; i <= w; i ++) { scanf("%d%d%d",&a,&b,&c); addedge(a,b,-c); } for(i = 1; i <= n; i ++) { if(dis[i] == -1&&!spfa(i)) { i = n+2; break; } } if(i == n+1) printf("NO "); else printf("YES "); } return 0; }
说好的入门题呢????为啥一上来我连dijsktra都还没怎么用就直接上涉及负权边的题。