zoukankan      html  css  js  c++  java
  • 【最小生成树入门专题1】H

    There are N (2<=N<=600) cities,each has a value of happiness,we consider two cities A and B whose value of happiness are VA and VB,if VA is a prime number,or VB is a prime number or (VA+VB) is a prime number,then they can be connected.What's more,the cost to connecte two cities is Min(Min(VA , VB),|VA-VB|). 
    Now we want to connecte all the cities together,and make the cost minimal.
    Input
    The first will contain a integer t,followed by t cases. 
    Each case begin with a integer N,then N integer Vi(0<=Vi<=1000000).
    Output
    If the all cities can be connected together,output the minimal cost,otherwise output "-1";
    Sample Input
    2
    5
    1
    2
    3
    4
    5
    
    4
    4
    4
    4
    4
    Sample Output
    4
    -1




    #include<stdio.h>
    #include<math.h>
    #include<stdlib.h>
    #include<string.h>
    #define inf 9999999 
    
    int e[1100][1100];
    int book[1100],a[1100];
    int dis[1100];
    int isprime[2010000];
    
    int Min(int a,int b)
    {
    	if( a<b)
    		return a;
    	return b;
    }
    
    int Prime(int n)
    {
    	int i;
    	if(n ==1||n==2)
    		return 0;
    	for(i = 2; i *i <= n; i ++)
    	{
    		if(n%i == 0)
    			return 0;
    	}
    	return 1;
    }
    
    int main()
    {
    	int t;
    	int n,i,j,u,count,sum,min,flag;
    	for(i = 1; i <= 2001000; i ++)
    	{
    		isprime[i] = 1;
    	}
    	isprime[0] = isprime[1] = 0;
    	for(i = 1; i*i <= 2001000; i ++)
    	{
    		if(isprime[i])
    		{
    			for(j = i*2; j <= 2001000; j = j+i)
    			{
    				isprime[j] = 0;
    			}
    		}
    	}
    	scanf("%d",&t);
    	while(t--)
    	{
    		memset(a,0,sizeof(a));
            memset(dis,0,sizeof(dis));
            memset(book,0,sizeof(book));
            memset(e,0,sizeof(e));
    		sum = count = 0;
    		flag = 0;
    		u = 0;
    		scanf("%d",&n);
    		for(i = 1; i <= n; i ++)
    			scanf("%d",&a[i]);
    		for(i = 1; i <= n; i ++)
    			for(j = 1; j <= n; j ++)
    			{
    				if(i == j)
    					e[i][j] = 0;
    				else if(isprime[a[i]]||isprime[a[j]]||isprime[a[i]+a[j]])
    				{
    					e[i][j] = Min(abs(a[i]-a[j]),Min(a[i],a[j]));
    					e[j][i] = Min(abs(a[i]-a[j]),Min(a[i],a[j]));
    					
    				}
    				else
    				{
    					e[i][j] = inf;
    					e[j][i] = inf;
    				}
    			}
    		for(i = 1; i <= n; i ++)
    		{
    			dis[i] = e[1][i];
    		}
    		count ++;
    		book[1] = 1;
    		while(count < n)
    		{
    			min = inf;
    			for(i = 1; i <= n; i ++)
    			{
    				if(!book[i]&&dis[i]<min)
    				{
    					min = dis[i];
    					u = i;
    				}
    			}
    			book[u] = 1;
    			sum = sum + dis[u];
    			count ++;
    			for(i = 1; i <= n; i ++)
    			{
    				if(!book[i]&&dis[i]>e[u][i])
    				{
    					dis[i] = e[u][i];
    				}
    					
    			}
    		}
    		for(i = 1; i <= n; i ++)
    			if(book[i])
    				flag++;
    		
    		if(flag != n)
    			printf("-1
    ");
    		else
    			printf("%d
    ",sum);
    	}
    	return 0;
    }
    









  • 相关阅读:
    mysql之触发器before和after的区别
    字段与属性的区别
    功能性和非功能性需求 UP中FURPS+模型需求分类方式
    脏读、不可重复读 共享锁、悲观锁 和 事务五种隔离级别
    抽象类、接口的区别 和 抽象类可以不实现接口的全部方法
    错误码:2003 不能连接到 MySQL 服务器在 (10061)
    在ubuntu下使用mysql API读取数据库的乱码问题
    vs2010下htmlcxx的编译以及环境的搭建
    effective c++ 条款15 在资源管理类中提供对原始资源的访问
    Qt 依赖包的加载
  • 原文地址:https://www.cnblogs.com/hellocheng/p/7350082.html
Copyright © 2011-2022 走看看