zoukankan      html  css  js  c++  java
  • 【二分匹配入门专题1】J

    传说在遥远的地方有一个非常富裕的村落,有一天,村长决定进行制度改革:重新分配房子。 
    这可是一件大事,关系到人民的住房问题啊。村里共有n间房间,刚好有n家老百姓,考虑到每家都要有房住(如果有老百姓没房子住的话,容易引起不安定因素),每家必须分配到一间房子且只能得到一间房子。 
    另一方面,村长和另外的村领导希望得到最大的效益,这样村里的机构才会有钱.由于老百姓都比较富裕,他们都能对每一间房子在他们的经济范围内出一定的价格,比如有3间房子,一家老百姓可以对第一间出10万,对第2间出2万,对第3间出20万.(当然是在他们的经济范围内).现在这个问题就是村领导怎样分配房子才能使收入最大.(村民即使有钱购买一间房子但不一定能买到,要看村领导分配的). 

    Input输入数据包含多组测试用例,每组数据的第一行输入n,表示房子的数量(也是老百姓家的数量),接下来有n行,每行n个数表示第i个村名对第j间房出的价格(n<=300)。 
    Output请对每组数据输出最大的收入值,每组的输出占一行。 

    Sample Input

    2
    100 10
    15 23

    Sample Output

    123

    题意:km算法的模板题

    orz!!我就嫌弃了一小下前面几道是水题,然后就遇到了km算法,花了一个下午来看,还有些细节不是很懂,模板倒是给背下来了,看来还得花时间消化

    (转自大牛博客)http://www.cnblogs.com/jackge/archive/2013/05/03/3057028.html

    【KM算法及其具体过程】
    (1)可行点标:每个点有一个标号,记lx[i]为X方点i的标号,ly[j]为Y方点j的标号。如果对于图中的任意边(i, j, W)都有lx[i]+ly[j]>=W,则这一组点标是可行的。特别地,对于lx[i]+ly[j]=W的边(i, j, W),称为可行边
    (2)KM 算法的核心思想就是通过修改某些点的标号(但要满足点标始终是可行的),不断增加图中的可行边总数,直到图中存在仅由可行边组成的完全匹配为止,此时这个 匹配一定是最佳的(因为由可行点标的的定义,图中的任意一个完全匹配,其边权总和均不大于所有点的标号之和,而仅由可行边组成的完全匹配的边权总和等于所 有点的标号之和,故这个匹配是最佳的)。一开始,求出每个点的初始标号:lx[i]=max{e.W|e.x=i}(即每个X方点的初始标号为与这个X方 点相关联的权值最大的边的权值),ly[j]=0(即每个Y方点的初始标号为0)。这个初始点标显然是可行的,并且,与任意一个X方点关联的边中至少有一条可行边
    (3)然后,从每个X方点开始DFS增广。DFS增广的过程与最大匹配的Hungary算法基本相同,只是要注意两点:一是只找可行边,二是要把搜索过程中遍历到的X方点全部记下来(可以用vst搞一下),以进行后面的修改;
    (4) 增广的结果有两种:若成功(找到了增广轨),则该点增广完成,进入下一个点的增广。若失败(没有找到增广轨),则需要改变一些点的标号,使得图中可行边的 数量增加。方法为:将所有在增广轨中(就是在增广过程中遍历到)的X方点的标号全部减去一个常数d,所有在增广轨中的Y方点的标号全部加上一个常数d,则 对于图中的任意一条边(i, j, W)(i为X方点,j为Y方点):
    <1>i和j都在增广轨中:此时边(i, j)的(lx[i]+ly[j])值不变,也就是这条边的可行性不变(原来是可行边则现在仍是,原来不是则现在仍不是);
    <2>i在增广轨中而j不在:此时边(i, j)的(lx[i]+ly[j])的值减少了d,也就是原来这条边不是可行边(否则j就会被遍历到了),而现在可能是;
    <3>j在增广轨中而i不在:此时边(i, j)的(lx[i]+ly[j])的值增加了d,也就是原来这条边不是可行边(若这条边是可行边,则在遍历到j时会紧接着执行DFS(i),此时i就会被遍历到),现在仍不是;
    <4>i和j都不在增广轨中:此时边(i, j)的(lx[i]+ly[j])值不变,也就是这条边的可行性不变。
    这 样,在进行了这一步修改操作后,图中原来的可行边仍可行,而原来不可行的边现在则可能变为可行边。那么d的值应取多少?显然,整个点标不能失去可行性,也 就是对于上述的第<2>类边,其lx[i]+ly[j]>=W这一性质不能被改变,故取所有第<2>类边的 (lx[i]+ly[j]-W)的最小值作为d值即可。这样一方面可以保证点标的可行性,另一方面,经过这一步后,图中至少会增加一条可行边。
    (5)修改后,继续对这个X方点DFS增广,若还失败则继续修改,直到成功为止;
    (6)以上就是KM算法的基本思路。但是朴素的实现方法,时间复杂度为O(n4)——需要找O(n)次增广路,每次增广最多需要修改O(n)次顶标,每次修改顶 标时由于要枚举边来求d值,复杂度为O(n2)。实际上KM算法的复杂度是可以做到O(n3)的。我们给每个Y顶点一个“松弛量”函数slack,每次开 始找增广路时初始化为无穷大。在寻找增广路的过程中,检查边(i,j)时,如果它不在相等子图中,则让slack[j]变成原值与 A[i]+B[j]-w[i,j]的较小值。这样,在修改顶标时,取所有不在交错树中的Y顶点的slack值中的最小值作为d值即可。但还要注意一点:修 改顶标后,要把所有不在交错树中的Y顶点的slack值都减去d

    #include<stdio.h>
    #include<string.h>
    #define N 310
    #define INF 0x3f3f3f3f
    
    int w[N][N],linker[N],visx[N],visy[N],slack[N];//visy和visx标记y和x 
    int lx[N],ly[N];//lx和ly是顶标 
    //nx是x点集个数,ny是y点集个数 
    int n,nx,ny;
    
    int dfs(int x)
    {
        int y;
        visx[x] = 1;
        for(y = 1; y <= ny; y ++)
        {
            if(!visy[y])
            {
                int tmp = lx[x] + ly[y] - w[x][y];
                if(tmp == 0)
                {
                    visy[y] = 1;
                    if(linker[y]==-1||dfs(linker[y]))
                    {
                        linker[y] = x;
                        return 1;
                    }
                }
                else if(slack[y] > tmp)
                    slack[y] = tmp;//在不相等的子图中slack取最小 
            }
        }
        return 0;
    }
    
    int km()
    {
        int sum,x,y,i,j;
        memset(linker,-1,sizeof(linker));
        memset(ly,0,sizeof(ly));
        for(i = 1; i <= nx; i ++)
            for(j = 1,lx[i]=-INF; j <= ny; j ++)
                if(lx[i] < w[i][j])
                    lx[i] = w[i][j];//lx初始化为与它关联边中最大的 
                    
        for(x = 1; x <= nx; x ++)
        {
            for(i = 1; i <= ny; i ++)
                slack[i] = INF;
            while(1)
            {
                memset(visx,0,sizeof(visx));
                memset(visy,0,sizeof(visy));
                if(dfs(x))//若成功(找到了增广轨),则该点增广完成,进入下一个点的增广
                    break;  //若失败(没有找到增广轨),则需要改变一些点的标号,使得图中可行边的数量增加。
                            //方法为:将所有在增广轨中(就是在增广过程中遍历到)的X方点的标号全部减去一个常数d,
                            //所有在增广轨中的Y方点的标号全部加上一个常数d
                int d = INF;
                for(i = 1; i <= ny; i ++)
                    if(!visy[i]&&d > slack[i])
                        d = slack[i];
                        
                for(i = 1; i <= nx; i ++)
                    if(visx[i])
                        lx[i] -= d;
                        
                for(i = 1; i <= ny; i ++)
                    if(visy[i])
                        ly[i] += d;
                    else
                        slack[i] -= d;//修改顶标后,要把所有不在交错树中的Y顶点的slack值都减去d
            }
        }
        sum = 0;
        for(i = 1; i <= ny; i ++)
            if(linker[i]!=-1)
                sum += w[linker[i]][i];
        return sum;
    }
    
    int main()
    {
        int i,j,ans;
        while(scanf("%d",&n)!=EOF)
        {
            nx = ny = n;
            for(i = 1; i <= n; i ++)
                for(j = 1; j <= n; j ++)
                    scanf("%d",&w[i][j]);
            ans = km();
            printf("%d
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    【算法学习笔记】27.动态规划 解题报告 SJTU OJ 1254 传手绢
    【算法学习笔记】26.扫描维护法 解题报告 SJTU OJ 1133 数星星
    【算法学习笔记】25.贪心法 均分纸牌问题的分析
    【算法学习笔记】24.记忆化搜索 解题报告 SJTU OJ 1002 二哥种花生
    【算法学习笔记】23.动态规划 解题报告 SJTU OJ 1280 整装待发
    【算法学习笔记】22.算法设计初步 二分查找 上下界判断
    【算法学习笔记】21.算法设计初步 求第k个数 划分法 快排法
    【算法学习笔记】20.算法设计初步 归并排序 求逆序数
    【算法学习笔记】19.算法设计初步 最大子列和问题的几种方法
    【算法学习笔记】18.暴力求解法06 隐式图搜索2 八数码问题 未启发
  • 原文地址:https://www.cnblogs.com/hellocheng/p/7354274.html
Copyright © 2011-2022 走看看