【本文链接】
http://www.cnblogs.com/hellogiser/p/query-min-max-successor-of-bst.html
【代码】
C++ Code
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
/*
version: 1.0 author: hellogiser blog: http://www.cnblogs.com/hellogiser date: 2014/9/18 */ // binary tree node struct struct BinaryTreeNode { int value; BinaryTreeNode *parent; // for rank of bst BinaryTreeNode *left; BinaryTreeNode *right; int size; // for kmin of bst // x.size = x.left.size + x.right.size +1 }; int node_size(BinaryTreeNode *node) { // get node size of node if (node == NULL) return 0; node->size = node_size(node->left) + node_size(node->right) + 1; return node->size; } int left_size(BinaryTreeNode *node) { // get left size of node in o(1) return node->left != NULL ? node->left->size : 0; } //================================================= // BST Tree kmin //================================================= BinaryTreeNode *kmin_bst(BinaryTreeNode *root, int k) { if (root == NULL) return NULL; int pk = left_size(root) + 1; // get node rank first if (k == pk) { return root; } else if (k < pk) { return kmin_bst(root->left, k); } else // k>pk { return kmin_bst(root->right, k - pk); } } BinaryTreeNode *Kmin_of_BST(BinaryTreeNode *root, int k) { if (root == NULL) return NULL; // get node size of bst first int nodes = node_size(root); if (k < 1 || k > nodes) return NULL; // use node size info to get kmin of bst return kmin_bst(root, k); } //================================================= // BST Tree querying //================================================= BinaryTreeNode *Search_of_BST(BinaryTreeNode *root, int key) { if (root == NULL) return NULL; if (key == root->value) return root; else if(key < root->value) return Search_of_BST(root->left, key); else return Search_of_BST(root->right, key); } BinaryTreeNode *Search_of_BST2(BinaryTreeNode *root, int key) { BinaryTreeNode *node = root; while (node != NULL && key != node->value) { if (key < node->value) node = node->left; else node = node->right; } return node; } BinaryTreeNode *Min_of_BST(BinaryTreeNode *root) { if (root == NULL) return NULL; BinaryTreeNode *node = root; while(node->left != NULL) node = node->left; return node; } BinaryTreeNode *Max_of_BST(BinaryTreeNode *root) { if(root == NULL) return NULL; BinaryTreeNode *node = root; while(node->right != NULL) node = node->right; return node; } /* x has right child ===> Min(x.right) (case 1) else px = x.parent (case 2) if px.right == x ===> go up until px==null (case 2.2) else px.left ==x ===> px (case 2.1) */ BinaryTreeNode *Successor(BinaryTreeNode *x) { if(x == NULL) return NULL; // case 1 if (x->right != NULL) return Min_of_BST(x->right); // case 2 BinaryTreeNode *px = x->parent; if(px == NULL) return NULL; // case 2.1 if (px->left == x) return px; // case 2.2 while(px != NULL && px->right == x) { x = px; px = px->parent; } return px; } /* px px / x x */ /* get all node size first rank = leftsize(x)+1 px = x.parent if px.right ==x ====> rank += leftsize(px)+1, go up else rank += 0 */ int Rank_of_BST(BinaryTreeNode *root, BinaryTreeNode *x) { if(root == NULL || x == NULL) return -1; // get node size first node_size(root); int rank = left_size(x) + 1; // parent's left or right child ? BinaryTreeNode *px = x->parent; while(px != NULL) { if (px->right == x) { // px's right child rank += left_size(px) + 1; } px = px->parent; } return rank; } |