从线性回归,logistic回归,softmax回归,最大熵的概率解释来看,我们会发现线性回归是基于高斯分布+最大似然估计的结果,logistic回归是伯努利分布+对数最大似然估计的结果,softmax回归是多项分布+对数最大似然估计的结果,最大熵是基于期望+对数似然估计的结果。前三者可以从广义线性模型角度来看。
广义线性模型
广义线性模型建立在三个定义的基础上,分别为:
定义线性预测算子
定义y的估计值
定义 y 的估值概率分布属于某种指数分布族:
接下来详细解释各个定义
指数分布家族
指数分布家族是指可以表示为指数形式的概率分布,指数分布的形式如下:
其中:
- (η)被称为自然参数(natural parameters)
- T(y)称为充分统计量,通常$T(y) = y $
- (a(η))称为对数分割函数(log partition function);
- (e^{-a(η)})本质上是一个归一化常数,确保(p(y;η))概率和为1。
当(T(y))被固定时,(a(η))、(b(y))就定义了一个以(η)为参数的一个指数分布。我们变化(η)就得到这个分布的不同分布。
为什么要把$ y (的条件分布定义为这么奇怪的指数分布族?这是因为,在这样的定义下,我们可以证明:
)p(y|η)$ 的期望值满足:
(p(y|η))的方差满足:
如此简洁的期望和方差意味着:一旦待估计的(y)的概率分布写成了某种确定的指数分布族的形式(也就是给定了具体的 (a,b,T)),那么我们可以直接套用公式 $h(x,θ)=E(y|x,θ)=frac{d}{dη}a(η) $ 构建回归模型。
实际上大多数的概率分布都属于指数分布家族,比如
1)伯努利分布 0-1问题
2)二项分布,多项分布 多取值 多次试验
3)泊松分布 计数过程
4)伽马分布与指数分布
5)(eta)分布
6)Dirichlet分布
7)高斯分布
现在我们将高斯分布和伯努利分布用指数分布家族的形式表示:
Bernoulli分布的指数分布族形式:
即:在如下参数下 广义线性模型是 Bernoulli 分布
Gaussian 分布的指数分布族形式:
在线性回归中,(sigma)对于模型参数( heta)的选择没有影响,为了推导方便我们将其设为1:
得到对应的参数:
用广义线性模型进行建模
想用 广义线性模型对一般问题进行建模首先需要明确几个 假设:
1.(y|x; heta ∼ ExponentialFamily(η))的条件概率属于指数分布族
2.给定x 广义线性模型的目标是 求解 T(y)|x , 不过由于 很多情况下(T(y)=y)所以我们的目标变成了(y|x) , 也即 我们希望拟合函数为(h(x)=E[y|x])
(NOTE: 这个条件在 线性回归 和 逻辑回归中都满足, 例如 逻辑回归中(h_ heta(x)=p(y=1|x; heta)))
3.自然参数(η)与 (x)是线性关系 : (η= heta^T x) ((η)为向量时,(η_i= heta_i^T x) )
有了如上假设 就可以进行建模和求解了:
广义线性模型 推导出 线性回归:
step1: (p(y|x;theta) ∼ N(mu, heta))
step2: 由假设2(h(x)=E[y|x])得到:
广义线性模型 推导出 逻辑回归:
step1: (p(y|x;theta) ∼ Bernoulli(phi))
step2: 由假设2(h(x)=E[y|x])得到: