zoukankan      html  css  js  c++  java
  • [leetcode-566-Reshape the Matrix]

    In MATLAB, there is a very useful function called 'reshape', which can reshape a matrix into a new one with different size but keep its original data.

    You're given a matrix represented by a two-dimensional array, and two positive integers r and c representing the row number and column number of the wanted reshaped matrix, respectively.

    The reshaped matrix need to be filled with all the elements of the original matrix in the same row-traversing order as they were.

    If the 'reshape' operation with given parameters is possible and legal, output the new reshaped matrix; Otherwise, output the original matrix.

    Example 1:

    Input: 
    nums = 
    [[1,2],
     [3,4]]
    r = 1, c = 4
    Output: 
    [[1,2,3,4]]
    Explanation:
    The row-traversing of nums is [1,2,3,4]. The new reshaped matrix is a 1 * 4 matrix, fill it row by row by using the previous list. 

    Example 2:

    Input: 
    nums = 
    [[1,2],
     [3,4]]
    r = 2, c = 4
    Output: 
    [[1,2],
     [3,4]]
    Explanation:
    There is no way to reshape a 2 * 2 matrix to a 2 * 4 matrix. So output the original matrix.

    Note:

    1. The height and width of the given matrix is in range [1, 100].
    2. The given r and c are all positive.

    思路:

    按行进行访问,然后找到相应位置依次赋值到新的矩阵中去。

     vector<vector<int> > matrixReshape(vector<vector<int> >& nums, int r, int c)
     {
         int hang = nums.size();
         int lie = nums[0].size();
         if(hang * lie != r * c) return nums;
         vector<vector<int> > res(r,vector<int> (c,0));
    
          for(int i =0;i< hang*lie;i++)
         {
             res[i/c][i%c] = nums[i/lie][i%lie];
         }
         return res;
    }
  • 相关阅读:
    Scrapy框架实现持久化存储
    Scrapy框架的介绍和基本使用
    处理页面动态加载数据
    爬虫数据解析
    Python爬虫基础
    Flask详解(下篇)
    Flask详解(中篇)
    CentOS 中的性能监测命令vmstat
    CentOS 7安装MySQL 8.0.15
    CF B.Kind Anton(4月8号)
  • 原文地址:https://www.cnblogs.com/hellowooorld/p/6789131.html
Copyright © 2011-2022 走看看