zoukankan      html  css  js  c++  java
  • [leetcode-592-Fraction Addition and Subtraction]

    Given a string representing an expression of fraction addition and subtraction,
    you need to return the calculation result in string format. The final result should be irreducible fraction.
    If your final result is an integer, say 2, you need to change it to the format of fraction that has denominator 1.
    So in this case, 2 should be converted to 2/1.
    Example 1:
    Input:"-1/2+1/2"
    Output: "0/1"
    Example 2:
    Input:"-1/2+1/2+1/3"
    Output: "1/3"
    Example 3:
    Input:"1/3-1/2"
    Output: "-1/6"
    Example 4:
    Input:"5/3+1/3"
    Output: "2/1"
    Note:
    The input string only contains '0' to '9', '/', '+' and '-'. So does the output.
    Each fraction (input and output) has format ±numerator/denominator. If the first input fraction or the output is positive, then '+' will be omitted.
    The input only contains valid irreducible fractions, where the numerator and denominator of each fraction will always be in the range [1,10]. If the denominator is 1, it means this fraction is actually an integer in a fraction format defined above.
    The number of given fractions will be in the range [1,10].
    The numerator and denominator of the final result are guaranteed to be valid and in the range of 32-bit int.

    思路:

    如下是参考一 大神给出的代码,先贴这儿,慢慢学习:

    string fractionAddition(string s)
    {
          long p = 0, q = 1, p1, q1, t;
        for (size_t i = 0, j; i < s.size(); i = j) {
          j = s.find_first_of("+-", i+1);
          if (j == string::npos) j = s.size();
          auto k = s.find('/', i);
          long x = stol(s.substr(i, k-i)), y = stol(s.substr(k+1, j));
          p1 = p*y+q*x;
          q1 = q*y;
          t = __gcd(p1, q1);
          p = p1/t;
          q = q1/t;
          if (q < 0) p *= -1, q *= -1;
        }
        return to_string(p)+"/"+to_string(q);
    }

    如下是leetcode上的solution。

    The initial fraction is 0/1 (n/d). We just need to read next fraction (nn/dd), normalize denominators between n/d and nn/dd (using GCD), and add/subtract the numerator (n +/- nn). In the end, we also need to use GCD to make the resulting fraction irreducible. 

    int GCD(int a, int b ){ return (b == 0) ? a : GCD(b, a % b); }
    string fractionAddition(string s) {
        int n = 0, d = 1, p = 0, p1 = 0, p2 = 0;
        if (s[0] != '-') s = "+" + s;
        while (p < s.size()) {
            for (p1 = p + 1; s[p1] != '/'; ++p1);
            for (p2 = p1 + 1; p2 < s.size() && s[p2] != '+' && s[p2] != '-'; ++p2);
            auto nn = stoi(s.substr(p + 1, p1 - p - 1)), dd = stoi(s.substr(p1 + 1, p2 - p1 - 1));
            auto gcd = GCD(d, dd);
            n = n * dd / gcd + (s[p] == '-' ? -1 : 1) * nn * d / gcd;
            d *= dd / gcd;
            p = p2;
        }    
        auto gcd = GCD(abs(n), d);
        return to_string(n / gcd) + "/" + to_string(d / gcd);
    }

    参考:

    https://leetcode.com/maskray/

    https://discuss.leetcode.com/topic/90024/c-12-lines-gcd

  • 相关阅读:
    近期安卓与IOS招聘面试有感
    java线程池技术(二): 核心ThreadPoolExecutor介绍
    java线程池技术(一):ThreadFactory与BlockingQueue
    Java设计模式之策略模式与状态模式
    java线程间通信:一个小Demo完全搞懂
    Android M 新的运行时权限开发者需要知道的一切
    Java多线程同步问题:一个小Demo完全搞懂
    java多线程之守护线程以及Join方法
    安卓电量优化之JobScheduler使用介绍
    安卓电量优化之WakeLock锁机制全面解析
  • 原文地址:https://www.cnblogs.com/hellowooorld/p/6884463.html
Copyright © 2011-2022 走看看