The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q'
and '.'
both indicate a queen and an empty space respectively.
For example,
There exist two distinct solutions to the 4-queens puzzle:
[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]
In this problem, we can go row by row, and in each position, we need to check if the column, the 45° diagonal and the 135° diagonal had a queen before. Solution A: Directly check the validity of each position, 12ms:
class Solution { public: std::vector<std::vector<std::string> > solveNQueens(int n) { std::vector<std::vector<std::string> > res; std::vector<std::string> nQueens(n, std::string(n, '.')); solveNQueens(res, nQueens, 0, n); return res; } private: void solveNQueens(std::vector<std::vector<std::string> > &res, std::vector<std::string> &nQueens, int row, int &n) { if (row == n) { res.push_back(nQueens); return; } for (int col = 0; col != n; ++col) if (isValid(nQueens, row, col, n)) { nQueens[row][col] = 'Q'; solveNQueens(res, nQueens, row + 1, n); nQueens[row][col] = '.'; } } bool isValid(std::vector<std::string> &nQueens, int row, int col, int &n) { //check if the column had a queen before. for (int i = 0; i != row; ++i) if (nQueens[i][col] == 'Q') return false; //check if the 45° diagonal had a queen before. for (int i = row - 1, j = col - 1; i >= 0 && j >= 0; --i, --j) if (nQueens[i][j] == 'Q') return false; //check if the 135° diagonal had a queen before. for (int i = row - 1, j = col + 1; i >= 0 && j < n; --i, ++j) if (nQueens[i][j] == 'Q') return false; return true; } };
参考: