zoukankan      html  css  js  c++  java
  • [leetcode-640-Solve the Equation]

    Solve a given equation and return the value of x in the form of string "x=#value". The equation contains only '+', '-' operation, the variable xand its coefficient.

    If there is no solution for the equation, return "No solution".

    If there are infinite solutions for the equation, return "Infinite solutions".

    If there is exactly one solution for the equation, we ensure that the value of x is an integer.

    Example 1:

    Input: "x+5-3+x=6+x-2"
    Output: "x=2"
    

    Example 2:

    Input: "x=x"
    Output: "Infinite solutions"
    

    Example 3:

    Input: "2x=x"
    Output: "x=0"
    

    Example 4:

    Input: "2x+3x-6x=x+2"
    Output: "x=-1"
    

    Example 5:

    Input: "x=x+2"
    Output: "No solution"

    Approach #1 Partioning Coefficients [Accepted]

    In the current approach, we start by splitting the given equationequation based on = sign. This way, we've separated the left and right hand side of this equation. Once this is done, we need to extract the individual elements(i.e. x's and the numbers) from both sides of the equation. To do so, we make use of breakItfunction, in which we traverse over the given equation(either left hand side or right hand side), and put the separated parts into an array.

    Now, the idea is as follows. We treat the given equation as if we're bringing all the x's on the left hand side and all the rest of the numbers on the right hand side as done below for an example.

    x+5-3+x=6+x-2

    x+x-x=6-2-5+3

    Thus, every x in the left hand side of the given equation is treated as positive, while that on the right hand side is treated as negative, in the current implementation. Likewise, every number on the left hand side is treated as negative, while that on the right hand side is treated as positive. Thus, by doing so, we obtain all the x's in the new lhslhs and all the numbers in the new rhsrhs of the original equation.

    Further, in case of an x, we also need to find its corresponding coefficients in order to evaluate the final effective coefficient of x on the left hand side. We also evaluate the final effective number on the right hand side as well.

    Now, in case of a unique solution, the ratio of the effective rhsrhs and lhslhs gives the required result. In case of infinite solutions, both the effective lhslhs and rhsrhsturns out to be zero e.g. x+1=x+1. In case of no solution, the coefficient of x(lhslhs) turns out to be zero, but the effective number on the rhsrhs is non-zero.

    Java

    public class Solution {
        public String coeff(String x) {
            if (x.length() > 1 && x.charAt(x.length() - 2) >= '0' && x.charAt(x.length() - 2) <= '9')
                return x.replace("x", "");
            return x.replace("x", "1");
        }
        public String solveEquation(String equation) {
            String[] lr = equation.split("=");
            int lhs = 0, rhs = 0;
            for (String x: breakIt(lr[0])) {
                if (x.indexOf("x") >= 0) {
                    lhs += Integer.parseInt(coeff(x));
                } else
                    rhs -= Integer.parseInt(x);
            }
            for (String x: breakIt(lr[1])) {
                if (x.indexOf("x") >= 0)
                    lhs -= Integer.parseInt(coeff(x));
                else
                    rhs += Integer.parseInt(x);
            }
            if (lhs == 0) {
                if (rhs == 0)
                    return "Infinite solutions";
                else
                    return "No solution";
            }
            return "x=" + rhs / lhs;
        }
        public List < String > breakIt(String s) {
            List < String > res = new ArrayList < > ();
            String r = "";
            for (int i = 0; i < s.length(); i++) {
                if (s.charAt(i) == '+' || s.charAt(i) == '-') {
                    if (r.length() > 0)
                        res.add(r);
                    r = "" + s.charAt(i);
                } else
                    r += s.charAt(i);
            }
            res.add(r);
            return res;
        }
    }

    Complexity Analysis

    • Time complexity : O(n)O(n). Generating cofficients and findinn $lhsandandrhswill takewilltakeO(n)$$.

    • Space complexity : O(n)O(n). ArrayList resres size can grow upto nn.

     

    参考:

    https://leetcode.com/articles/solve-the-equation/

  • 相关阅读:
    《Windows核心编程系列》十四谈谈默认堆和自定义堆
    《windows核心编程系列》十五谈谈windows线程栈
    《Windows核心编程系列》十三谈谈在应用程序中使用虚拟内存
    《Windows核心编程系列》十二谈谈Windows内存体系结构
    《Windows核心编程系列》十一谈谈Windows线程池
    Extjs利用vtype验证表单
    Extjs文本输入框
    Extjs文本输入域
    远程数据源Combobox
    Extjs整体加载树节点
  • 原文地址:https://www.cnblogs.com/hellowooorld/p/7141073.html
Copyright © 2011-2022 走看看