zoukankan      html  css  js  c++  java
  • 二分图匹配,最小点覆盖——POJ

    题目链接

    题目含义

    两个机器分别有n,m种模式,每个工作需要任一机器达到某个模式,问最少要变换几次模式

    题目分析

    将两个机器的n,m种模式作为二分图的两个集合,每个工作代表之间的一条线

    题目可以化为求能覆盖所有边的最少点(取a或b的点都可以)

    然后根据定理,可以转化成求最大匹配

    注意,当工作需要机器的模式是0时,这个工作不用变模式就可以完成,就可以不用考虑

    题目代码

    #include<stdio.h>
    #include<iostream>
    #include<string.h>
    using namespace std;
    const int maxn=3e4+7;
    struct edge{
        int to,next;
    }e[1007];
    int head[107],tot;
    void add(int u,int v){
        e[tot].to=v;
        e[tot].next=head[u];
        head[u]=tot++;
    }
    bool vis[107];
    int bmach[107],n,m,k,I,x,y;
    void init(){
        tot=0;
        memset(head,-1,sizeof(head));
        memset(bmach,0,sizeof(bmach));
    }
    bool find(int u){
        for(int i=head[u];i!=-1;i=e[i].next){
            int v=e[i].to;
            if(vis[v])continue;
            vis[v]=true;
            if(!bmach[v]||find(bmach[v])){
                bmach[v]=u;return true;
            }
        }return false;
    }
    int main(){
        while(scanf("%d",&n)){
            if(n==0)return 0;
            scanf("%d%d",&m,&k);
            init();
            int mx=0;
            for(int i=1;i<=k;i++){
                scanf("%d%d%d",&I,&x,&y);
                if(mx<x)mx=x;
                if(x==0||y==0)continue;
                add(x,y);
            }
            int sum=0;
            for(int i=1;i<=mx;i++){
                memset(vis,false,sizeof(vis));
                if(find(i))sum++;
            }
            printf("%d
    ",sum);
        }
    }
  • 相关阅读:
    js的异步运行机制
    Android NDK 安装与配置
    JNI与NDK的区别
    Android 开发手记一NDK编程实例
    android AIDL服务
    Android Service学习之AIDL, Parcelable和远程服务
    Android中JNI的使用方法
    Android之drawable state各个属性详解
    android中的Touch研究
    Android中的ListView点击时的背景颜色设置
  • 原文地址:https://www.cnblogs.com/helman/p/11290903.html
Copyright © 2011-2022 走看看