zoukankan      html  css  js  c++  java
  • 机器学习实战笔记(Python实现)-09-树回归

    ----------------------------------------------------------------------------------------

    本系列文章为《机器学习实战》学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正。

    源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction

    ----------------------------------------------------------------------------------------

    1、连续和离散型特征的树的构建 

    决策树算法主要是不断将数据切分成小数据集,直到所有目标变量完全相同,或者数据不能再切分为止。它是一种贪心算法,并不考虑能否达到全局最优。前面介绍的用ID3构建决策树的算法每次选取当前最佳的特征来分割数据,并按照该特征的所有可能取值来划分,这种切分过于迅速,且不能处理连续性特征。另外一种方法是二元切分法,每次把数据集切成两份,如果数据的某特征等于切分所要求的值,那么这些数据就进入树的左子树,反之右子树。二元切分法可处理连续型特征,节省树的构建时间。

    这里依然使用字典来存储树的数据结构,该字典将包含以下4个元素:

    • 待切分的特征
    • 待切分的特征值
    • 右子树,不需切分时,也可是单个值
    • 左子树,右子树类似

    本章将构建两种树:第一种是第2节的回归树(regression tree),其每个叶节点包含单个值;第二种是第3节的模型树(model tree),其每个叶节点包含一个线性方程。创建这两种树时,我们将尽量使得代码之间可以重用。下面先给出两种树构建算法中的一些共用代码。

     1 from numpy import *
     2 
     3 def loadDataSet(fileName):
     4     '''
     5     读取一个一tab键为分隔符的文件,然后将每行的内容保存成一组浮点数    
     6     '''
     7     dataMat = []
     8     fr = open(fileName)
     9     for line in fr.readlines():
    10         curLine = line.strip().split('	')
    11         fltLine = map(float,curLine)
    12         dataMat.append(fltLine)
    13     return dataMat
    14 
    15 def binSplitDataSet(dataSet, feature, value):
    16     '''
    17     数据集切分函数    
    18     '''
    19     mat0 = dataSet[nonzero(dataSet[:,feature] > value)[0],:]
    20     mat1 = dataSet[nonzero(dataSet[:,feature] <= value)[0],:]
    21     return mat0,mat1
    22 
    23 def createTree(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4)):
    24     '''
    25     树构建函数
    26     leafType:建立叶节点的函数
    27     errType:误差计算函数
    28     ops:包含树构建所需其他参数的元组    
    29     '''    
    30     #选择最优的划分特征
    31     #如果满足停止条件,将返回None和某类模型的值
    32     #若构建的是回归树,该模型是一个常数;如果是模型树,其模型是一个线性方程
    33     feat, val = chooseBestSplit(dataSet, leafType, errType, ops)
    34     if feat == None: return val #
    35     retTree = {}
    36     retTree['spInd'] = feat
    37     retTree['spVal'] = val
    38     #将数据集分为两份,之后递归调用继续划分
    39     lSet, rSet = binSplitDataSet(dataSet, feat, val)
    40     retTree['left'] = createTree(lSet, leafType, errType, ops)
    41     retTree['right'] = createTree(rSet, leafType, errType, ops)
    42     return retTree  

     

    2、CART回归树

    CART(Classification And Regression Trees, 分类回归树)是十分著名的树构建算法,它使用二元切分来处理连续性变量,对其稍作修改就可处理回归问题。

    2.1 构建树

    ①切分数据集并生成叶节点

    给定某个误差计算方法,chooseBestSplit()函数会找到数据集上最佳的二元切分方式,此外,该函数还要确定什么时候停止切分,一旦停止切分会生成一个叶节点。该函数伪代码大致如下:

    ②计算误差

    这里采用计算数据的平方误差。

    Python代码:

     1 def regLeaf(dataSet):
     2     '''负责生成叶节点'''
     3     #当chooseBestSplit()函数确定不再对数据进行切分时,将调用本函数来得到叶节点的模型。
     4     #在回归树中,该模型其实就是目标变量的均值。
     5     return mean(dataSet[:,-1])
     6 
     7 def regErr(dataSet):
     8     '''
     9     误差估计函数,该函数在给定的数据上计算目标变量的平方误差,这里直接调用均方差函数
    10     '''
    11     return var(dataSet[:,-1]) * shape(dataSet)[0]#返回总方差
    12 
    13 def chooseBestSplit(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4)):
    14     '''
    15     用最佳方式切分数据集和生成相应的叶节点
    16     '''  
    17     #ops为用户指定参数,用于控制函数的停止时机
    18     tolS = ops[0]; tolN = ops[1]
    19     #如果所有值相等则退出
    20     if len(set(dataSet[:,-1].T.tolist()[0])) == 1:
    21         return None, leafType(dataSet)
    22     m,n = shape(dataSet)
    23     S = errType(dataSet)
    24     bestS = inf; bestIndex = 0; bestValue = 0
    25     #在所有可能的特征及其可能取值上遍历,找到最佳的切分方式
    26     #最佳切分也就是使得切分后能达到最低误差的切分
    27     for featIndex in range(n-1):
    28         for splitVal in set(dataSet[:,featIndex]):
    29             mat0, mat1 = binSplitDataSet(dataSet, featIndex, splitVal)
    30             if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN): continue
    31             newS = errType(mat0) + errType(mat1)
    32             if newS < bestS: 
    33                 bestIndex = featIndex
    34                 bestValue = splitVal
    35                 bestS = newS
    36     #如果误差减小不大则退出
    37     if (S - bestS) < tolS: 
    38         return None, leafType(dataSet)
    39     mat0, mat1 = binSplitDataSet(dataSet, bestIndex, bestValue)
    40     #如果切分出的数据集很小则退出
    41     if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN):
    42         return None, leafType(dataSet)
    43     #提前终止条件都不满足,返回切分特征和特征值
    44     return bestIndex,bestValue

    主要测试命令:

    >>> reload(regTrees)
    >>> myData = regTrees.loadDataSet('ex00.txt')
    >>> myMat = mat(myData)
    >>> regTrees.createTree(myMat)

    【注意】本代码在Python3.5环境下测试未通过,错误发生在以上第5行-->return mean(dataSet[:,-1])

    错误类型为 TypeError: unsupported operand type(s) for /: 'map' and 'int' 暂未找到解决办法。所以,以下测试结果均来自书本。

    2.2 剪枝

    一棵树如果节点过多,表明该模型可能对数据进行了“过拟合”。通过降低决策树的复杂度来避免过拟合的过程称为剪枝(pruning) 。

    ①预剪枝

    在函数chooseBestSplit()中的提前终止条件,实际上是在进行一种所谓的预剪枝(prepruning)操作。树构建算法其实对输人的参数tols和tolN非常敏感,如果使用其他值将不太容易达到这么好的效果。

    ②后剪枝

    使用后剪枝方法需要将数据集分成测试集和训练集。首先指定参数,使得构建出的树足够大、足够复杂,便于剪枝。接下来从上而下找到叶节点,用测试集来判断将这些叶节点合并是否能降低测试误差。如果是的话就合并 。

    Python实现代码:

     1 def prune(tree, testData):
     2     '''回归树剪枝函数'''
     3     if shape(testData)[0] == 0: return getMean(tree) #无测试数据则返回树的平均值
     4     if (isTree(tree['right']) or isTree(tree['left'])):#
     5         lSet, rSet = binSplitDataSet(testData, tree['spInd'], tree['spVal'])
     6     if isTree(tree['left']): tree['left'] = prune(tree['left'], lSet)
     7     if isTree(tree['right']): tree['right'] =  prune(tree['right'], rSet)
     8     #如果两个分支已经不再是子树,合并它们
     9     #具体做法是对合并前后的误差进行比较。如果合并后的误差比不合并的误差小就进行合并操作,反之则不合并直接返回
    10     if not isTree(tree['left']) and not isTree(tree['right']):
    11         lSet, rSet = binSplitDataSet(testData, tree['spInd'], tree['spVal'])
    12         errorNoMerge = sum(power(lSet[:,-1] - tree['left'],2)) +
    13             sum(power(rSet[:,-1] - tree['right'],2))
    14         treeMean = (tree['left']+tree['right'])/2.0
    15         errorMerge = sum(power(testData[:,-1] - treeMean,2))
    16         if errorMerge < errorNoMerge: 
    17             print("merging")
    18             return treeMean
    19         else: return tree
    20 
    21 def isTree(obj):
    22     '''判断输入变量是否是一棵树'''
    23     return (type(obj).__name__=='dict')
    24 
    25 def getMean(tree):
    26     '''从上往下遍历树直到叶节点为止,计算它们的平均值'''
    27     if isTree(tree['right']): tree['right'] = getMean(tree['right'])
    28     if isTree(tree['left']): tree['left'] = getMean(tree['left'])
    29     return (tree['left']+tree['right'])/2.0

    测试命令:

    reload(regTrees)
    myData2 = regTrees.loadDataSet('ex2.txt')
    myMat2 = mat(myData2)
    from numpy import *
    myMat2 = mat(myData2)
    regTrees.createTree(myMat2)
    myTree = regTrees.createTree(myMat2, ops=(0,1))
    myDataTest = regTrees.loadDataSet('ex2test.txt')
    myMat2Test = mat(myDataTest)
    regTrees.prune(myTree, myMat2Test)

    3、模型树

    ①叶节点

    用树建模,除了把叶节点简单地设定为常数值外,还可把叶节点设定为分段线性函数,这里的分段线性是指模型由多个线性片段组成。

    如下图所示数据,如果使用两条直线拟合是否比使用一组常数来建模好呢?答案显而易见。可以设计两条分别从0.0~0.3、从0.3~1.0的直线,于是就可以得到两个线性模型。因为数据集里的一部分数据(0.0~0.3)以某个线性模型建模,而另一部分数据(0.3~1.0)则以另一个线性模型建模,因此我们说采用了所谓的分段线性模型。

    ②误差计算

    前面用于回归树的误差计算方法这里不能再用。稍加变化,对于给定的数据集,先用线性的模型来对它进行拟合,然后计算真实的目标值与模型预测值间的差值。最后将这些差值的平方求和就得到了所需的误差。

    与回归树不同,模型树Python代码有以下变化:

     1 def linearSolve(dataSet):
     2     '''将数据集格式化成目标变量Y和自变量X,X、Y用于执行简单线性回归'''
     3     m,n = shape(dataSet)
     4     X = mat(ones((m,n))); Y = mat(ones((m,1)))
     5     X[:,1:n] = dataSet[:,0:n-1]; Y = dataSet[:,-1]#默认最后一列为Y
     6     xTx = X.T*X
     7     #若矩阵的逆不存在,抛异常
     8     if linalg.det(xTx) == 0.0:
     9         raise NameError('This matrix is singular, cannot do inverse,
    
    10         try increasing the second value of ops')
    11     ws = xTx.I * (X.T * Y)#回归系数
    12     return ws,X,Y
    13 
    14 def modelLeaf(dataSet):
    15     '''负责生成叶节点模型'''
    16     ws,X,Y = linearSolve(dataSet)
    17     return ws
    18 
    19 def modelErr(dataSet):
    20     '''误差计算函数'''
    21     ws,X,Y = linearSolve(dataSet)
    22     yHat = X * ws
    23     return sum(power(Y - yHat,2))

    测试命令:

    >>> regTrees.createTree(myMat,regTrees.modelLeaf,regTrees.modelErr.(1,10))

    4、实例:树回归与标准回归的比较

    前面介绍了模型树、回归树和一般的回归方法,下面测试一下哪个模型最好。这些模型将在某个数据上进行测试,该数据涉及人的智力水平和自行车的速度的关系。

     1 def createForeCast(tree, testData, modelEval=regTreeEval):
     2     # 多次调用treeForeCast()函数,以向量形式返回预测值,在整个测试集进行预测非常有用
     3     m=len(testData)
     4     yHat = mat(zeros((m,1)))
     5     for i in range(m):
     6         yHat[i,0] = treeForeCast(tree, mat(testData[i]), modelEval)
     7     return yHat
     8 
     9 def treeForeCast(tree, inData, modelEval=regTreeEval):
    10     '''
    11     # 在给定树结构的情况下,对于单个数据点,该函数会给出一个预测值。
    12     # modeEval是对叶节点进行预测的函数引用,指定树的类型,以便在叶节点上调用合适的模型。
    13     # 此函数自顶向下遍历整棵树,直到命中叶节点为止,一旦到达叶节点,它就会在输入数据上
    14     # 调用modelEval()函数,该函数的默认值为regTreeEval()    
    15     '''
    16     if not isTree(tree): return modelEval(tree, inData)
    17     if inData[tree['spInd']] > tree['spVal']:
    18         if isTree(tree['left']): return treeForeCast(tree['left'], inData, modelEval)
    19         else: return modelEval(tree['left'], inData)
    20     else:
    21         if isTree(tree['right']): return treeForeCast(tree['right'], inData, modelEval)
    22         else: return modelEval(tree['right'], inData)
    23 
    24 def regTreeEval(model, inDat):
    25     #为了和modeTreeEval()保持一致,保留两个输入参数
    26     return float(model)
    27 
    28 def modelTreeEval(model, inDat):
    29     #对输入数据进行格式化处理,在原数据矩阵上增加第0列,元素的值都是1
    30     n = shape(inDat)[1]
    31     X = mat(ones((1,n+1)))
    32     X[:,1:n+1]=inDat
    33     return float(X*model)

    测试命令:

    #回归树
    >>> reload(regTrees)
    >>> trainMat = mat(regTrees.loadDataSet('bikeSpeedVsIq_train.txt'))
    >>> testMat = mat(regTrees.loadDataSet('bikeSpeedVsIq_test.txt'))
    >>> myTree = regTrees.createTree(trainMat, ops=(1,20))
    >>> yHat = regTrees.createForeCast(myTree, testMat[:,0])
    >>> corrcoef(yHat, testMat[:,1], rowvar=0)
    array([[ 1.        ,  0.96408523],
           [ 0.96408523,  1.        ]])
    #模型树
    >>> myTree = regTrees.createTree(trainMat, regTrees.modelLeaf, regTrees.modelErr
    , (1,20))
    >>> yHat = regTrees.createForeCast(myTree, testMat[:,0], regTrees.modelTreeEval)
    >>> corrcoef(yHat, testMat[:,1], rowvar=0)[0,1]
    0.97604121913806285
    # 标准回归
    >>> ws, X, Y = regTrees.linearSolve(trainMat)
    >>> ws
    matrix([[ 37.58916794],
            [  6.18978355]])
    >>> for i in range(shape(testMat)[0]) :
    ...     yHat[i] = testMat[i,0]*ws[1,0] + ws[0,0]
    ...
    >>> corrcoef(yHat, testMat[:,1], rowvar=0)[0,1]
    0.94346842356747584

    THE END.

  • 相关阅读:
    redis缓存雪崩、穿透、击穿概念及解决办法
    搭建svn
    树莓派3
    开博留念
    Linux系统网卡配置“漂移”现象
    3.1、final、finally、 finalize
    2.2、Exception和Error
    2.1、NoClassDefFoundError和ClassNotFoundException区别
    1、Java平台的理解
    阻塞队列(java并发编程)
  • 原文地址:https://www.cnblogs.com/hemiy/p/6268123.html
Copyright © 2011-2022 走看看