BZOJ没有题面,差评
题解
其实这题很久之前就写了,也想写个题解但是太懒了,咕到了今天
在typora写完题解不想copy过来再改格式了,于是直接贴截图qwq
#include <bits/stdc++.h> #define ll long long #define inf 0x3f3f3f3f #define il inline #define int long long namespace io { #define in(a) a=read() #define out(a) write(a) #define outn(a) out(a),putchar(' ') #define I_int int inline I_int read() { I_int x = 0 , f = 1 ; char c = getchar() ; while( c < '0' || c > '9' ) { if( c == '-' ) f = -1 ; c = getchar() ; } while( c >= '0' && c <= '9' ) { x = x * 10 + c - '0' ; c = getchar() ; } return x * f ; } char F[ 200 ] ; inline void write( I_int x ) { if( x == 0 ) { putchar( '0' ) ; return ; } I_int tmp = x > 0 ? x : -x ; if( x < 0 ) putchar( '-' ) ; int cnt = 0 ; while( tmp > 0 ) { F[ cnt ++ ] = tmp % 10 + '0' ; tmp /= 10 ; } while( cnt > 0 ) putchar( F[ -- cnt ] ) ; } #undef I_int } using namespace io ; using namespace std ; #define N 100010 int a1 , l , r , k , p , m ; struct matrix { int m[2][2] ; matrix() { memset(m,0,sizeof(m)); } matrix operator * (const matrix &x) { matrix ans; for(int i = 0 ; i < 2 ; i ++) { for(int j = 0 ; j < 2 ; j ++) { for(int k = 0 ; k < 2 ; k ++) { ans.m[i][j] = (ans.m[i][j] + m[i][k] * x.m[k][j]) % p ; } } } return ans ; } } base , ans ; void power(int b) { base.m[0][0] = base.m[1][0] = base.m[0][1] = 1 ; base.m[1][1] = 0 ; ans.m[0][0] = ans.m[1][1] = 1 ; ans.m[1][0] = ans.m[0][1] = 0 ; while(b) { if(b&1) ans = ans * base ; base = base * base ; b >>= 1; } } int x , y ; int exgcd(int a , int b) { if(b == 0) { x = 1 ; y = 0 ; return a ; } int Ans = exgcd(b , a % b) , t = x ; x = y ; y = t - (a / b) * y ; return Ans ; } int find(int x , int t) { int l = 0 , r = t / p + 1 ; while(l <= r) { int mid = (l + r) >> 1 ; if(x + p * mid >= t) r = mid - 1 ; else l = mid + 1 ; } return l ; } signed main() { int T = read() ; while(T--) { a1 = read() , l = read() , r = read() , k = read() , p = read() , m = read() ; a1 %= p ; power(k - 2) ; int mod = (m - a1 * ans.m[1][0] % p + p) % p ; int gcd = exgcd(ans.m[0][0] , p) ; if(mod % gcd != 0) { puts("0") ; continue ; } x = x * (mod/gcd) ; p /= gcd ; x = (x % p + p) % p ; outn( find(x , r+1) - find(x , l) ) ; } }