zoukankan      html  css  js  c++  java
  • 矩阵快速幂3 k*n铺方格

     1 #include <iostream>
     2 #include <cstdlib>
     3 #include <cstring>
     4 #include <queue>
     5 #include <cstdio>
     6 #include <algorithm>
     7 #include <map>
     8 #include <time.h>
     9 #include <ext/pb_ds/assoc_container.hpp>
    10 #include <ext/pb_ds/tree_policy.hpp>
    11 #define LL long long
    12 
    13 using namespace std;
    14 using namespace __gnu_pbds;
    15 
    16 
    17 const int MOD = 12357;
    18 
    19 struct Martix
    20 {
    21     LL martix[260][260];
    22     int row,col;
    23     Martix(int _row,int _col)
    24     {
    25         memset(martix,0,sizeof(martix));
    26         row = _row;
    27         col = _col;
    28     }
    29     void sets(int _row,int _col)
    30     {
    31         memset(martix,0,sizeof(martix));
    32         row = _row;
    33         col = _col;
    34     }
    35     Martix operator *(const Martix &A)const
    36     {
    37         Martix C(row, A.col);
    38         for(int i = 0; i < row; i++)
    39             for(int j = 0; j < A.col; j++)
    40                 for(int k = 0; k < col; k++)
    41                 {
    42                     C.martix[i][j] =  (C.martix[i][j] + martix[i][k] * A.martix[k][j]);
    43                     if(C.martix[i][j] >= MOD)
    44                         C.martix[i][j]%=MOD;
    45                 }
    46 
    47         return C;
    48     }
    49 };
    50 
    51 //
    52 //第i行不放置:new_x = x << 1, new_y = (y << 1) + 1; 列数+1
    53 //第i行竖放骨牌:new_x = (x << 1) + 1, new_y = y << 1; 列数+1
    54 //第i行横向骨牌:new x = (x << 2) + 3, new_y = (y << 2) + 3; 列数+2
    55 
    56 int k;
    57 Martix A(260,260),F(260,260);
    58 void dfs(int x,int y,int col)
    59 {
    60     if(col == k) {A.martix[y][x] = 1; return ;}
    61     dfs(x<<1, (y<<1) + 1, col+1);
    62     dfs( (x<<1) + 1, y << 1, col + 1);
    63     if(col + 2 <= k)
    64         dfs( (x << 2)+ 3, (y << 2)+3, col+2);
    65 }
    66 
    67 void solve()
    68 {
    69     int n;
    70     scanf("%d %d",&k,&n);
    71     if( (k&1) && (n&1) )
    72     {
    73         printf("%d
    ",0);
    74         return ;
    75     }
    76     A.sets(1<<k,1<<k);
    77     F.sets(1<<k,1<<k);
    78     dfs(0,0,0);
    79     for(int i = 0; i < (1<<k); i++)
    80         F.martix[i][i] = 1;
    81     while(n > 0)
    82     {
    83         if(n & 1)
    84             F = F*A;
    85         A = A*A;
    86         n >>= 1;
    87     }
    88     printf("%lld
    ",F.martix[ (1<<k)-1 ][ (1<<k)-1 ]);
    89 }
    90 
    91 int main(void)
    92 {
    93     solve();
    94     return 0;
    95 }
  • 相关阅读:
    一个自动化测试工具 UI Recorder
    通俗理解http2.0
    IE 问题集合
    webpack
    性能工具集合
    网络 问题
    css命名规范
    ajax 总结
    CSS深入理解学习笔记之relative
    jQuery插件开发通用框架
  • 原文地址:https://www.cnblogs.com/henserlinda/p/5742095.html
Copyright © 2011-2022 走看看